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Energy relaxation dynamics in a simple quantum model of electron-phonon system
is numerically investigated. We show delocalization in one-dimensional disordered
electronic system with coherent harmonic perturbations. The appearance of the
delocalization implies that the system has potential for irreversibility and dissipa-
tion. Next, we investigate dissipative property of the dynamically delocalized state
and show that an irreversible quasistationary energy flow indeed appears in the
form of a ”heat” flow when we couple the perturbed system with an autonomous
mode.

1 Introduction

There have been some attempts examing quantum dissipation 1. The most
popular approaches are heat-bath approach (with infinite number of phonon
modes) 2,3, random matrix bath approach 4, linear response theory 5,6, and
Landauer formula 7,8,9, and so on. In the orthodox approaches, stochastiza-
tion mechanisms and heat reservoir consisting of infinite number of degrees
of freedom are explicitly or implicitly assumed in advance 10,11,2. A more
interesting scenario of the electronic stochastization is the possibility that the
stochastization mechanism is generated in the system without any help of the
time-dependent stochastic source.

In the present paper, it is demonstrated that contrary to traditional the-
ories infinite number of phonon modes are not necessary and just few phonon
modes are sufficient for the delocalization and irreversible energy transfer from
the scattered electron to the phonon modes to be induced if the scattering
potential is spatially irregular 12,13,14. In the concrete, a possibly simplest
situation is modeled by one-dimensional disordered system (1DDS) coupled
with finite number of harmonic time-dependent perturbation and/or harmonic
oscillators. Delocalization phenomena and energy relaxation dynamics of the
system are numerically investigated. Some of the further details of the numer-
ical results have been reported in references 13,15. Here we give a short review
of the papers and some new results. Note that classically chaotic system with
quasi-periodic perturbation have also been used in order to investigate the
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localization-delocalization transition by several authors 16,17,18.
The outline is given as follows. In the next section we explain the two

kinds of the models we used. In section 3, we give some numerical results
about quantum diffusion of initially localized wave packet in 1DDS with oscil-
latory perturbation. In section 4, we show numerical result about occurrence
of dissipative phenomena in closed quantum system, which is an autonomous
system, consisting of 1DDS and oscillators. In section 5, we investigate a
quantum state of the autonomous mode during occurence of the energy flow,
and give a simple phenomenological interpretation for the thermalization phe-
nomena. The last section is devoted to summary and discussion. Derivations
of some equations are added in appendices.

2 Model

2.1 Autonomous model

We use 1-DDS coupled with a few harmonic oscillators in order to investigate
the energy transfer between the electron and the phonon modes. The total
Hamiltonian Htot is consisting of tightly-binding electronic part Hel, harmonic
oscillators Hph,M with incommensurate frequencies {ωi} and interaction part
Hint between them with coupling strength {bj} as follows:

Htot = Hel + Hph + Hint, (1)

Hel =
N∑

n=1

|n > V (n) < n| +
N∑
n

(|n >< n + 1| + |n + 1 >< n|), (2)

Hph,M =
M∑

j=1

(
p̂2

j

2
+

ω2
j q̂2

j

2

)
, (3)

Hint =
N∑

n=1

M∑
j=1

(|n > V (n) < n|)bj q̂j . (4)

V (n) is the onsite energy of electron at the site n, which varies at random
in the range [−W,W ] from site to site. If the number of phonon mode goes
to infinity with an analytical frequency spectrum, then the phonon system
becomes a heat reservoir implicitly or explicitly supposed in orthodox theories,
but in our treatment the number of phonon modes is finite.
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2.2 Nonautonomous models

If the harmonic oscillators are highly excited, the model Htot becomes equiv-
alent to a simple time-dependent Hamiltonian perturbed by a classical driv-
ing force. Indeed, oscillatory external perturbation V (n, t) = V (n)[1 +

ε√
L

∑L
i=1 cos(Ωit)] can be mathematically identified with highly excited quan-

tum harmonic oscillators 19,1,12. Accordingly if the approximation be used
for some autonomous phonon modes we can replace them by external per-
turbation. Then the time-dependent Shrődinger equation that we generally
simulate becomes

ih̄
∂Ψtot(n, {qj}, t)

∂t
= Ψtot(n + 1, {qj}, t) + Ψtot(n − 1, {qj}, t)

+
{ M∑

j=1

(
p̂2

j

2
+

ω2
j q̂2

j

2

)
+

N∑
n=1

M∑
j=1

bjV (n)q̂j

+ V (n)[1 +
ε√
L

L∑
i=1

cos(Ωit)]
}
Ψtot(n, {qj}, t), (5)

where the Ψtot(n, {qj}, t) represent the wave function of the whole system
in a site basis. One of the advantage of this model is that although the
number of the autonomous mode M is limited due to computer power, we
can freely control the number of the frequency components L of the harmonic
perturbation. In the simulation we set M =0 or 1 and/or L =0,1,· · ·,5. For
convenience, we refer Hamiltonian in eq.(5) as Htot

L,M in the following sections

3 Dynamical Delocalization in Nonautonomous System

In our previous paper 13 we showed that the 1DDS exhibits a remarkable
delocalization behavior when it is perturbed by classical oscillating forces with
several frequency components. The model system is just the model (5) without
the harmonic oscillators, i.e., M=0. Such a delocalization phenomenon is a
key to understand the occurrence of irreversibility and dissipation.

3.1 Dynamical Delocalization

When oscillatory harmonic perturbations are applied to 1DDS, an initially
localized wave packet of electron (Ψ(t = 0) = δn,0) spreads unlimitedly, and
we called such a quantum state dynamically delocalized state. It is very inter-
esting that such a non-localized state can be easily realized only by applying
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Figure 1. Logarithmic plots of time-dependent MSD of some cases (L =0,1,2,5), where
ε =0.5, W = 0.9 and h̄ = 1. 20 different configurations are used for the ensemble average.
The insert is real scale one.

an weak coherent perturbation. The delocalization property can be quanti-
tatively characterized by the mean square displacement (MSD) of the wave
packet: m2(t) =< Ψ(t)|n̂2|Ψ(t) >, where n̂ ≡∑N

n=1 n|n >< n| is the position
operator and Ψ(t) is the time-dependent wave packet.

We performed longer time simulation for larger system than the previous
ones 13. The results are shown in Fig.1 for monochromatically (L = 1) and
polychromatically (L ≥ 2) perturbed cases. It is found that the wave packet,
which is localized without the interaction with the oscillatory perturbation
20,21, spreads beyond the original localization length as time elapses. The
diffusive behavior is observed within the time scale accessible by numerical
computations, and the diffusion process is not in general the normal diffusion
but a subdiffusion, which is characterized by a power law increase:

m2(t) ∼ tα, (0 < α ≤ 1). (6)
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The subdiffusive behavior approach the normal diffusion (α = 1) promptly as
the number L of the frequency and/or the perturbation strength ε increase.
However, we note that in the monochromatic case (L = 1) the diffusive behav-
ior is suppressed at a certain level which is longer than the original localization
length. In the next subsection, we consider further details of the monochro-
matically perturbed cases (L = 1).

The appearance of the diffusive behavior of the wave packet in real space
implies that through the dynamic interaction with the coherent perturba-
tion a quantum-mechanical pure state is transformed into a complex pure
state which may be called ”stochastic” state. The Anderson localized state
is thus unstable against weak dynamical perturbations, and a delocalization
manifests itself in the form of an unlimited diffusion. Further it has been
also revealed that the dynamical delocalization properties obeys remarkable
spatio-temporal scaling laws. It were discussed extensively in our previous
paper and we do not repeat it in the present paper 13.

3.2 Monochromatically perturbed case (L=1)

We consider the localization in the monochromatically perturbed 1DDS. First,
we numerically confirm quasieigenstates of the time-periodic system. The
quasieigenstates are defined by eigenstates {|Φα >} of one-periodic time-
evolution operator U(T ≡ 2π

Ω1
) as,

U(T )|Φα >= exp(−iηα)|Φα >, (7)

U(t) = exp(− i

h̄

∫ t

0

Htot
M=0,L=1(t)dt) (8)

The property of quasieigenstates are directly related to the localization prop-
erty of the wave packet Ψ(n, t = kT ) =< n|U(T )k|Ψ(t = 0) > in site represen-
tation. In Fig.2, we show some typical quasieigenstates |uα(n)| = | < n|Φα > |
for the 1-DDS with monochromatic perturbation. The quasieigenstates are
exponentially localized, and it is consistent with appearance of the suppression
of the diffusive behavior at certain level in Fig.1. In appendix A, a method
in order to calculate numerically the quasieigenstates is given.

Next we consider interpret the localization phenomena by transforming
the time-dependent Schrődinger equation to sationary Schrődinger equation.
Inserting Ψ(n, t) = exp(−iηt)

∑
k Cn,k exp(−ikΩt) to equation (5), the ampli-

tude Cn,k obey following equation.

h̄ηCn,k = (V (n) − h̄kΩ)Cn,k + (Cn+1,k + Cn−1,k)

+
εV (n)

2
(Cn,k+1 + Cn,k−1), (9)
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Figure 2. Some quasieigenstates |uα(n)| = | < n|Φα > | for one-periodic time evolution
operator U(T = 2π/Ω1) of monochromatically perturbed 1DDS in Fig.1.

where Ω = Ω1. (See appendix B.) This equation is equivalent to two-
dimensional tightly binding system with static electric field and off-diagonal
randomness in k−direction. Roughly speaking, we found that at least in
monochromatically perturbed 1DDS complicated phenomena based on two
kinds of the localization, Anderson localization and Stark-ladder localization,
are mixed 22,23,24. It is difficult to analytically get the exact evidence for the
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localization because our system is a nonseparable system.

3.3 Energy transfer

The non-autonomous model Htot
L,M=0(t) in eq.(5) without the autonomous

mode can be transformed into an autonomous version Haut
L composed of 1DDS

and linear oscillators as follows.

Haut
L = Hel +

L∑
j=1

ΩjJj + Hosc,L({φj}), (10)

Hosc,L({φj}) = V (n)
ε√
L

L∑
j=1

cos φj (11)

where Jj = −ih̄ ∂
∂φj

. The relation between eigenstates of the autonomous
version Haut

L and quasieigenstaes of the nonautonomous model Htot
L,M=0(t) is

given in appendices A and C. It is worth noting that the autonomous model
are equivalent to the highly excited harmonic oscillators and works as the
source of harmonic perturbation in the nonautonomous model. Based upon
the autonomous picture, we can discuss the exchange of energy between the
electron and the ”phonon modes” of the linear oscillators. The backaction of
the delocalization of electron to the phonon modes will results in an excitation
and/or deexcitation in the action space of the phonon modes.

We discuss on the exchange of energy between the electronic system and
the perturbing system. Since we can introduce an autonomous version of the
non-autonomous model, we can explicitly compute the energy which flows
from the electronic system to the perturbing mode, which is represented by
the expectation value < Ψaut(t)|∑L

j=1 ΩjJj |Ψaut(t) >≡ EJ , where Ψaut(t)
is the time-dependent wave function of the autonomous system Haut

L (t). By
using the formula (22) in an appendix C, it immediately follows that

EJ (t) =
∫ t

0

ds < Ψ(s)|∂Htot
L,M=0(s)

∂s
|Ψ(s) >, (12)

where Ψ(t) is the time-dependent wavefunction of the nonautonomous system
Htot

L,M=0(t). The derivation is given in appendix C.
Figure 3 shows the ensemble averaged energy < EJ (t) > transferred to

the phonon modes during the time evolution process depicted in Fig.1. It
is evident that the phonon energy fluctuates around a certain level, and do
not show any signature of net energy transfer between the phonons and the
electron. This is because the backaction of the electron makes the phonons
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Figure 3. Time-dependence of ansemble-averaged phonon energy < EJ (t) > in polychro-
matically perturbed cases (L = 2, 5). The parameters are same values to Fig.1.

Figure 4. Time-dependence of phonon energy EJ (t) of the nonautonomous modes in poly-
chromatically perturbed case (L = 3). The initial states of the electron are set in eigenstates
at high energy (nel = 3) and low energy (nel = 123), where nel is number of energy level
from the top of the energy level. The other parameters are same values to Fig.1.

excite and deexcite symmetrically around the initial Fock state. In other
words, the phonons show a diffusive motion around the initial state along the
ladder of Fock basis.
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Another important reason is that the initial electronic state (Ψ(t = 0) =
δn,0) is a mixture of almost all the localized basis with negative and positive
energy eigenvalues, and the expectation value of energy is close to zero. In
other words, the electron has no excessive energy. Indeed, if we choose the
initial electronic state to the highest-energy localized state (or the lowest-
energy localized state), the symmetry of the diffusion of phonons around the
initial phononic state is broken and the phonon absorbs (or emits) energy as
is depicted in Fig.4, although the net energy flow is not very intensive because
the excited diffusion flow and the deexcited diffusion flow almost cancel out
each other. This fact implies that, if a phonon is prepared initially not in
a highly excited state but in the ground states of the harmonic oscillators,
the deexcitation is forbidden, and the phonon mode will be excited diffusely
toward the higher Fock states, which means the onset of a one-way energy
transport from the electronic system to the phonon system. This is just the
main subject of the subsequent sections.

4 Energy Relaxation of Delocalized States

As has been seen in last section, the additional monochromatic perturbation
enhances the localization length of 1DDS, and polychromatic perturbation
makes the localization length diverge. In this section we observe the energy
relaxation of the 1DDS perturbed by coherently oscillatory force. In the
concrete, we couple the dynamically perturbed 1DDS with a harmonic oscil-
lator in order to investigate energy flow between electron and the autonomous
mode. We prepare the electron initially in a sufficiently high excited eigen-
state and set the autonomous phonon in the ground state, and compute the
time-dependent phononic energy Eph(t), electronic energy Eel(t), and MSD
of the electron.

4.1 Monochromatically perturbed case (M = 1, L = 1)

As shown in Fig.5, if the coupling strength is large enough (b = 1.0) the dif-
fusion and a one-way energy transfer continues until it reaches a fully relaxed
state even at smaller values of perturbation strength ε. The behavior is quite
different from the non-perturbed case (L = 0) which it saturates at certain
level on the way of the fully relaxation 13. It seems that at early stage of
the time-evolution the phonon energy exhibits a nice linear increase, while
the electronic energy decreases monotonously until it reaches to almost zero
energy level. The flowing rate of energy increases in accordance with the in-
crement in the perturbation strength ε. The MSD of the electronic state also
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Figure 5. Time-dependence of (a) an electronic energy, (b) a phononic energy and (c) MSD
of electron in monochromatically perturbed cases (M = 1, L = 1), where W = 0.9, h̄ = 1/8,
b = 1.0, ω = 0.8, Ω1=

√
2 and the varius perturbation strength ε = 0.1, 0.2, 0.4.

approaches the maximum length allowed by the finite system size. The final
electronic state with almost zero energy can be regarded as an equilibrium
state which contains all the localization basis, whose energies are distributed
symmetrically around zero, with even statistical weight. We can judge that
the system is delocalized and becomes completely dissipative in such a coupling
strength regime.

Furthermore, we show some cases with different electronic initial states
in Fig.6. The number of the eigenstates nel =4, 14 and 21 from the top of the
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Figure 6. Time-dependence of (a) an electronic energy, (b) a phononic energy and (c)
MSD of electron in monochromatically perturbed cases (M = 1, L = 1), where W = 0.9,
h̄ = 1/8, b = 1.0, ω = 0.8, ε = 0.4 and the frequency Ω1=

√
2, for three different initial

excited eigenstate of electron (nel =4, 14 and 30).

energy level are used as the initial excited states. The other parameters are
set the same to the case of the Fig.5. The behavior of the energy relaxation
is almost similar to the other case in Fig.5.

As a result, it seems that a stationary energy transport continue slowly
for long time before the spread of the wave packet reach the saturation level
when the coupling strength is large to make mixing in the system.
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Figure 7. Time-dependence of (a) an electronic energy, (b) a phononic energy and (c)
MSD of electron in monochromatically and polychromatically perturbed cases (M = 1,
L = 1, 2, 4, 5), where W = 0.9, h̄ = 1/8, b = 0.4, ω = 0.8 and ε = 0.4. The frequency
components of the perturbation {Ωi} are chosen within a range [0.5, 1.5] randomly.

4.2 Polychromatically perturbed case (M = 1, L ≥ 2)

When the number of the frequency components of the perturbation is larger
than or equal to two (L ≥ 2), the 1DDS exhibits typical symptom of dynamical
delocalization. In this subsection we examine dissipative property for the
polychromatically perturbed 1DDS.

Typical examples of time-dependent energy transfer between a polychro-
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Figure 8. Time-dependence of energy EJ of the total nonautonomous modes and each of
the modes (#1, #2, #3) in polychromatically perturbed cases (L = 3), where W = 0.9,
h̄ = 1/8, b = 0.8, ω = 0.8 and ε = 0.4. The frequency components of the perturbation
{Ωi} are chosen within a range [0.5, 1.5] randomly. The insert shows the Eel, Eph, EJ in
the time evolution.

matically perturbed 1DDS (L = 2, 4, 5) and the autonomous mode are de-
picted in Fig.7. In all cases the MSD grows up to the maximum scale and
a complete delocalization is achieved, and the electronic energy shows a very
nice relaxation behavior even in the cases with small coupling strength. In the
early stage of time-evolution, the electron loses its energy linearly in time. In
such a quasi-stationary regime the emission rate of energy per unit time can
be well defined 15. Monotonic increase of phonon energy continues until the
wave packet spreads over the system size and the electronic energy approaches
to zero level, which indicate a complete delocalization. We can confirm the
energy fluctuation in the nonautonomous modes during the energy transfer
from electron to the autonomous mode. As shown in Fig.8, energy of each
of the nonautonomous modes EJk

(t) fluctuates around certain level due to
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Figure 9. Phonon distribution P (Enph) = | < nph|Ψ(t) > |2 v.s. Enph at several time
(t = 100, 200, 300, 400, 500) in the polychromatically perturbed case (M = 1, L = 5). The
parameters are b = 0.4 and ε = 0.4.

exchange of the energy between the each of the modes and electron.
In conclusion, all the above features indicate that a complete dissipation

is realized in case of L ≥ 2.

5 Quantum State of Autonomous Mode

In this section, we pay attention to the quantum state of the autonomous
phonon mode during the (quasistationary) energy flow. We show the phonon
distribution in polychromatically perturbed case (L = 5) as a typical ex-
ample. Figure 9 shows the semi-log plots of the probability distribution
P (Enph

) = | < nph|Ψtot(t) > |2 of the autonomous phonon mode as a func-
tion of the energy Enph

. The Boltzmann-type distribution appears only when
quasistationary energy transfer from electron to phonons is observed. As a
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result, the phonon mode reaches promptly a ”thermalized state” characterized
by a well defined time-dependent temperature T (t).

A simple phenomenological interpretation is possible for the appearance of
the Boltzmann-type distribution as we use a harmonic oscillator. We express
the total Hamiltonian in Fock space.

Htot
L,M =

N∑
n=1

V (n, t)b†nbn +
∑

n

(b†n−1bn + b†n+1bn)

+
M∑

j=1

(
1
2

+ a†
jaj)h̄ωj

+ b

N∑
n=1

M∑
j=1

√
h̄

2Ωj
V (n, t)b†nbn(a†

j + aj), (13)

where the b denotes the coupling strength. The b†n, bn are creation and an-
nihilation operators of an electron at n−th site in real space, which satisfy
the usual anticommutation relations for Fermions, [bn, b†m]+ = δn,m. The
a†

j , aj are creation and annihilation operators for j−th energy eigenstate of
the autonomous mode. The Heisenberg equation for creation operator of the
autonomous mode become following linear equation.

da†
j(t)
dt

= iωja
†
j(t) + ib

√
h̄

2Ωj

∑
n

U†(t)b†nV (n, t)bnU(t). (14)

Here we assume some statistical property of the second term of RHS, R(t) ≡
ib
√

h̄
2Ωj

∑
n U†(t)b†nV (n, t)bnU(t). Neglecting the weak dependence of the cor-

relation function < R†(t2)R(t1) >≡ G(t1, t2 − t1) (t2 > t1) on t1 and rapid
decay for time region, t2 − t1 > tc, the expectation value of the autonomous
mode increases in proportion to time. If a†

j is an integration over the stochas-
tic source R(t) with the very short characteristic time tc. The amplitude a†

j is
a sum over statistically independent quantities and hence should obey a Gaus-
sian stochastic process. Regarding a†

j as c-number, the distribution function of
a†

j should be the Gaussian distribution P (aj , a
†
j) ∝ exp{−const×|aj |2}, which

is equivalent to the Boltzmann-type distribution. Moreover, if the Heisenberg
equation for density operator of the electron,

dρ(t)
dt

= − i

h̄
[Htot

L,M , ρ], (15)

can be effectively transformed into a diffusion-type equation, the MSD <
n2 >=

∑
n2 < n|ρ|n > increases linearly in time.
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6 Summary and Discussion

Diffusive and dissipative property of 1DDS perturbed by time-dependent har-
monic driving force is numerically investigated. We have shown that the
1DDS is sensitive to a coupling with other degrees of freedom and that the 1-
DDS driven by periodically time-varying perturbation exhibits a subdiffusive
behavior.

We investigated dissipative property of the dynamically delocalized states
by coupling the system with an another simple system prepared in the ground
state. An irreversible flow of energy from electron to phonons is induced spon-
taneously even though the number of phonon modes is only two. Electron
scattered by an irregular potential emits its energy to the phonon modes,
and moreover the phonons are excited to a thermal state characterized by
a well defined temperature. In this report, we did not show the results in
stochastically perturbed cases, the results are almost similar to that of poly-
chromatically perturbed cases with more than four colors.

Spatial irregularity also plays a crucial role as an origin of quantum irre-
versibility when it is combined with a dynamical interference arising from some
other degrees of freedom. Such a mechanism may provide a simple dynamical
modeling to understand the origin of resistivity in solid state materials 25,26.

Note that there are, recently, some interesting reports concerning roles of
the chaotic system as a ”heat bath” in quantum system with small degrees of
freedom 27,28,29,30.
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Appendix

A Relation between quasieigenstates and eigenstates

In this appendix we show a relation between eigenstates of the autonomous
version Haut

L=1 and Floquetstates of the nonautonomous system Htot
L=1,M=0. Let

us consider eigenvalue equation of time-evolution operator U(t) for one-period
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T = 2π/Ω,

U(T )φα(n) = exp(−iηα)φα(n), (16)

where ηα and φα(n) are αth quasieigenenergy and quasieigenstate in site
n−representation, respectively. To get the quasieigenstates numerically, we
diagonalize matrix < 
|U(T )|m > which is created by one-periodic time evo-
lution for each of the unit vectors, where the |m > denotes unit vector with
nonzero element only in the m−th site as |m >= (|0, 0, · · · , 1, · · · , 0 >)†.

We define a function φα,�(θ, n) by using the operator, the quasieigenstate
and quasieigen energy,

φα,�(θ, n) ≡ exp(−iηαθ/Ω + i
θ)U(θ/Ω)φα(n), (17)

where 
 represent arbitrary integer. It can be found that this function becomes
the eigenstate of an autonomous version Haut

L=1 of the monochromatically per-
turbed Hamiltonian Htot

L=1,M (t), by inserting the function into the eigenvalue
equation, Haut

L=1φα,�(θ, n) = Eα,�φα,�(θ, n). As a result we see that the 
 means
a quantum number which characterize the eigenstate of the linear oscillator,
and the eigenenergies of the autonomous version are given by,

Eα,� = ηα + 2π
. (18)

B Floquet States

We derive a stationary Shrődinger equation by inserting Ψtot(n, t) of eq.(19)
in the time-dependent Schrődinger equation (5) for Htot

L,M=0.

Ψtot(n, t) = exp(−iηt)
∑

k1,k2,···,kL

Cn,k1,k2,···,kL
exp(−i

L∑
j=1

kjΩjt), (19)

The amplitude Cn,k1,k2,···,kL
obey following equation.

h̄ηCn,k1,k2,···,kL
= (V (n) − h̄

L∑
j=1

kjΩj)Cn,k1,k2,···,kL

+ (Cn+1,k1,k2,···,kL
+ Cn−1,k1,k2,···,kL

)

+
εV (n)
2
√

L
{Cn,k1+1,k2,···,kL

+ Cn,k1−1,k2,···,kL

+ Cn,k1,k2+1,···,kL
+ Cn,k1,k2−1,···,kL

+ · · ·
+ Cn,k1,k2,···,kL+1 + Cn,k1,k2,···,kL−1}, (20)
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It can be regarded as (L+1)−dimensional tight-binding system with disorder
under external field.

C Derivation of eq.(12)

In this appendix we derive the expression of the phonoic energy in the nonau-
tonamous system. We show the expression only in monochromatically per-
turbed case. Extension to polychromatically perturbed cases is easy. First we
consider following autonomous Hamiltonian:

Haut
L=1 = Hel + Hosc

L=1(φ) + ΩJ. (21)

The term ΩJ(≡ HJ = −ih̄Ω ∂
∂φ ) represents a linear oscillator, where J and Ω

are action variable and frequency of the motion, respectively. The φ is angle
variables which is conjugate to J . The time evolution operator is given as
follows:

Uaut ≡ exp(−i
Hautt

h̄
)

= exp(−i
ΩJt

h̄
)T̂ exp

(− i

h̄

∫ t

0

ds{Hel + Hosc(Ωs + φ)}). (22)

where T̂ is time-ordering operator.
We set an initial state,

|Ψtot(t = 0) >= |i > ⊗|φ0 >, (23)

where the |i > and |φ0 > are initial state of electron and eigenstate of the phase
operator, respectively. Here we consider a derivative of < Ψtot(t)|HJ |Ψtot(t) >
by time,

d < Ψtot(t)|HJ |Ψtot(t) >

dt
=

i

h̄
< Ψtot(t)|[Haut

L=1,HJ ]|Ψtot(t) >

= − < Ψtot(t)|Ω∂Hosc
L=1(φ)
∂φ

|Ψtot(t) >

= −Ω < φ0|⊗ < i|U(t)† exp(
iJΩt

h̄
)
∂Hosc

L=1(φ)
∂φ

× exp(
−iJΩt

h̄
)U(t)|i > ⊗|φ0 >

= − < i|U†(t)
∂Hosc

L=1(Ωt + φ)
∂t

U(t)|i > . (24)
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In the last equal sign we used following relations.

exp(
iJΩt

h̄
)
∂f(φ)

∂φ
exp(

−iJΩt

h̄
) =

∂f(φ + Ωt)
∂φ

=
1
Ω

∂f(φ + Ωt)
∂t

. (25)

As a result, we can get integration of above equation (24), i.e., EJ(t), by
calculating of the time-evolution of the initial state |i > of the electron.
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