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Abstract

We report the dynamical instability of one-dimensional chain with nearest-neighbor Lennard—Jones interaction. It is
found that a certain plateau region exists in the energy dependence of the maximal Lyapunov exponent between weakly
and strongly chaotic regions. That is, the exponent is insensitive in the region to the increase of the total energy of the
system. It is numerically shown that the region is enhanced with the decrease in the particle density. The spatio-temporal
patterns of particle position in the region shows a kind of collective motion, especially for low particle density

cases. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction and models

Dynamical properties of one-dimensional (1-D)
system with large number of degrees of freedom,
such as FPU model and ¢* model, have been
extensively investigated since the original studies
[1,8,9]. However, 1-D Lennard—Jones (LJ) chain
has not been studied except for some early works in
the 1970s [2], although it retains basic interest in
the nonlinear dynamics.

Our purpose is to investigate the specific energy
(i.e., energy density) dependence and the particle
density dependence of the maximal Lyapunov ex-
ponent (MLE) in LJ system. We deal with a one-
dimensional N particle system confined within an
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interval L described by the following Hamiltonian:

N p2

H= Z |:7" + U(|un+1 - un')j|a (1)
n=1

where u, and p, are the coordinate of the nth atom

and the conjugate momentum, respectively, and

U is the LJ pair potential between the nearest-

neighbor atoms, which is given by

Ur) = 4[(;) — <%> ] + f(L,N). (2)

The f(L, N) is taken to be a constant which makes
the total potential energy zero. The periodic boun-
dary condition is used. The potential minimum is
given at ro, = 2'°. We set the particle density
d unity when all particles are arranged with equal
interval ry, i.e., d = Nro/L. When the system length
L is changed while keeping the number of particles,
the configuration of the equilibrium state becomes
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quite a different one from the configuration with
equal interval.

2. Numerical result and discussion

We have used 6th order symplectic integrator
with a small time step to integrate numerically the
equations of motion for various system parameters
such as the particle density d and the specific energy
E [3]. The energy dependence of MLE, which is an
indicator for stochasticity, can be calculated by the
time evolution of an infinitesimal perturbation vec-
tor &(t) = (0p4(t), ..., Opn(t), 8q1(t), ..., dqn(t)) in 2N
dimensional tangent vector space. The MLE 1, is
roughly given by lim,_, ,,|¢p(t)| oc exp(4,t), where the
|p(2)| is proportional to a norm ||6&(2)||.

Fig. 1 shows the energy dependence of the MLE
A1 at various particle densities d. A certain plateau
region (P-region) exists between the quasiperiodic
(solid-like) region corresponding to E < E; and
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Fig. 1. Log-log plot of MLE 4,(E) as a function of specific
energy at various densities in Lennard—Jones system. The arrows
roughly show E; = 0.4 and E, = 20 to distinguish three regions.
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Fig. 2. Some spatio-temporal patterns at various specific energy at d = 0.5 for system size N = 32 in LJ system.
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strongly chaotic (gas-like) region corresponding to
E > E,. In that region the energy dependence is
insensitive to the increase of the specific energy. The
presence of the P-region (E; € E < E,)is a remark-
able feature in LJ system, different from FPU or
soft-core system in which the potential form has
convexity for the entire specific energy region [4].
On the other hand, when we pay attention to the
particle density dependence of 1,, it follows that a
clear P-region is well-observed in low density cases
d <1, and P-region disappears in high density
cases d > 1.

There are two types of mechanism which cause
exponential instability. The first type causes local
instability and the other parametric instability (glo-
bal instability). If the potential form is convex such
as FPU or soft-core type, only parametric instabil-
ity exists in the system. On the other hand, since
both types of instabilitiy exist in the LJ system, the
local instability is regarded as a cause to generate
P-region [4]. Moreover, there are also the two
types of mechanism, parametric and local instabili-
ties, in the Morse system [5]. A P-region can also
be well observed in the energy dependence of the
MLE /; in the Morse system. Accordingly, these
facts support that the presence of local instability is

an effective cause of the existence of the P-region.
More details of numerical results will be shown in
Refs. [6,7].

The existance of the P-region means that the
increase in the specific energy does not increase
stochastic orbits immediately in the region. It is
supposed that the energy is used to generate co-
operative motions in the region. Fig. 2 shows some
spatio-temporal patterns of the particle position at
several energies for d = 0.5. In fact, a (clustered
state like) co-operative particle motion can be well
observed [6,7].
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