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Abstract

Coherent oscillatory perturbations enhance the localization length of one-dimensional quantum disordered systems to
a numerically undetectable level and result in an anomalous diffusion. The transition to the normal diffusion occurs
continuously with the perturbation strength and/or the number of frequency components of the oscillatory perturbation. The
corresponding space(x)-time(¢) distribution function P(x, t) reduces to the unified scaling form P(x, ) ~ exp[—const x
(x/ t*/2y#], which contains the localization and the normal diffusion as two extreme cases and interpolates the two limits

in the general case. © 1998 Published by Elsevier Science B.V.

The localization phenomena in one-dimensional
disordered quantum systems ( 1-DDS) have been ex-
tensively studied since several decades ago [1,2]. It
is well known that almost all the eigenstates are local-
ized in the presence of any disorder [3]. The localiza-
tion is regarded as a result of coherent backscattering
by irregularly distributed scatterers [2]. There are
generally two length scales in the disordered quantum
systems; one is the mean free path £ and the other is
the localization length L [4]. The apparently diffu-
sive behavior of the wave packet, which is initially
localized on a lattice site, can be observed until the
wave packet length reaches the second length scale L.

However, the existence of such a diffusive regime
has not been established in the ordinary 1-DDS,
because these two lengths are almost of the same
scales [1,2]. If the spatial dimension is more than
one, the localization length L becomes much longer
than £ or maybe infinite, and an anomalous diffusive

motion obeying a power law ¢ (0< a <1) becomes
observable [5]. It is not, however, easy to confirm
numerically whether or not the presence of such an
anomalous (or maybe normal) diffusion regime is
intrinsic.

If the localization mechanism is destroyed by some
mechanism, we may expect that the wave packet will
exhibit a diffusive motion rather than a ballistic mo-
tion, but the nature of the quantum diffusion which
is supposed to appear in the delocalization regime
has not been fully understood. A simple and realistic
way to destroy the localization mechanism is to intro-
duce a coupling with some other dynamical degrees
of freedom. In fact, some class of classically chaotic
quantum systems, which exhibit the Anderson local-
ization, may recover the classical normal diffusion by
introducing a coupling with other dynamical degrees
of freedom [6]. In actual situations, electrons being
scattered by irregularly distributed impurities are also
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perturbed by the oscillations due to lattice vibrations.
Such an oscillatory perturbation will destroy the coher-
ence yielding the localization phenomenon and may
result in a stationary conduction of electrons. Mott
first pointed out that the oscillatory perturbation ap-
plied to the localized system may induce the hopping
of an electron over a distance much longer than L {7].
However, the approach is based upon the perturbation
theory, and it can not predict whether the longer time
behavior is an intrinsic quantum diffusion or not [7,8].
On the other hand, the effect of oscillatory perturba-
tion on the disordered quantum system has been stud-
ied also for the dynamical persistent current in disor-
dered mesoscopic rings and cylinders [9] and for the
Zener tunneling transition [ 10]. These treatments are
also based upon the perturbation theory.

The aim of this present paper is to investigate how
the localization phenomenon is influenced by intro-
ducing a coupling with other dynamical degrees of
freedom, which is simulated by classical oscillatory
perturbations. In preliminary reports we showed that
the localization length is much enhanced by adding a
single-frequency oscillatory perturbation [12]. In the
present paper, our concern is how the number of de-
grees of freedom together with the strength of the cou-
pling changes the quantum dynamics of wave packet
which is localized without the dynamical perturbation.
As is expected, the localization length is much en-
hanced to the level undetectable by numerical experi-
ments. The main results are that an anomalous diffu-
sion emerges and the normal diffusion in the rigorous
sense is achieved in a certain limit, and that the spatio-
temporal evolution of the distribution function associ-
ated with the anomalous diffusion obeys a scaling rule
which contains the localization type and the normal
diffusion type distributions as the two opposite limits.

The model treated in this paper is a 1-DDS with
nearest-neighbor interaction, which is perturbed by pe-
riodically oscillating forces:

N
H(t) = |n)(Vo(n) + Vi(n, 1)) (n]

n=1
N

+Z(|n><n+1l+fn+1)(nf), (1)

n=1

M
Vi(n,t) = v,(n)—\/%Zcos(w,-z). (2)
j=1

The basis set {|n)} is an orthonormalized one repre-
senting lattice sites, and Vy(n) and Vi (n) are the on-
site energy of an electron at site n, and Vy(n) varies
randomly in the range [—W, W] from site to site.
The oscillatory perturbation is polychromatic and is
composed of M different frequency components (col-
ors). We suppose all the amplitudes of the frequency
components are the same, and so the long-time aver-
age of the squared perturbation amplitude is given by
(Vi(n,1)%)/Vi(n)* = 1€ ({...), indicates the long-
time average), and thus € characterizes the perturba-
tion strength. The frequencies {w;} are so chosen as
mutually incommensurate, which are typically given
asw) =1, wy =14 4/2/25 w3 =1+ +/3/25,...,
and so on. A similar model with oscillatory perturba-
tion applied to the off-diagonal part of tight-binding
model has been used in order to investigate the diffu-
sion property [11].

There are various ways of choosing the interaction
potential: one possibility is to take V;(n) as a ran-
dom function of #, and another is to choose V;(n) as
a systematic function of n. In the present paper, we
mainly report the former case, V; (n) = Vy(n), namely
the on-site random potential is perturbed by the same
oscillatory force.

The time-dependent wave packet, which is formally
represented by

¥(t) =exp < - i/[2cosh(6/¢9x)
0

+ W(x) +V1(x,s)]ds>11’(0) (3)

(fi=1), can be computed numerically by combining
the higher-order symplectic integrator (SI) with the
fast-Fourier transform (FFT) [13]. Since the FFT is
done almost exactly by choosing the number of lattice
sites N = 21"°€r ynder the periodic boundary condi-
tion, ¥ (t) can be computed at a very high precision
by the FFT-SI scheme. We only consider time evo-
lution in which the wave front of the packet does not
reach the boundary in order to avoid influencing the
boundary condition and finite size effect. We used the
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6th order SI with the site number N = 1024 and the
size of the SI integration step At = 0.05.

To observe the temporal behavior of the wave func-
tion, we show the time dependence of the mean-square
displacement (MSD) of the wave packet;

N’ = (TR = A)*¥(D)))a, 4)

where i = }:;": , #|n){n| is the position operator, the
angular brackets, (...} and (...}, means quantum
and sample averages (averaged over 20-50 samples
of random potentials), respectively. We examine how
the nature of the Anderson localization changes as
the number of independent frequencies M and/or the
intensity of perturbation € are increased.

In case of M = 1, the diffusive behavior is observed
within the time scale #; on which the unperturbed
system becomes localized [12], but such a temporal
diffusion is suppressed on a longer time scale, and the
MSD evidently saturates at a level much larger than
the localization length L of the unperturbed system.
For M > 2, however, the presence of the localization
length can no longer be recognized on the time scale
accessible by computer simulation'. But the MSD
does not exhibit the normal diffusion over a time scale
much longer than #,. To elucidate the nature of the
temporal evolution process of MSD, we show in Fig. 1
the log-log plot of MSD as functions of time.

Except for the initial regime of time evolution,
where the transient effect still remains, all the data
except for M = 1 align along straight lines with tan-
gents less than 1, and so we may conclude that the
MSD obeys a well-defined subdiffusion law,

&n%=Dr* (O<a<l). (5)

The exponent « estimated from the numerical data is
plotted in Fig. 2a. We find that the exponent « grad-
ually increases and approaches 1, which means the
onset of normal diffusion. This fact seems to imply
that at finite € the normal diffusion in the mathemat-
ically rigorous sense is achieved only in the limit of
M — oo.

Next, we investigate in detail how the transition
from the subdiffusion to the normal diffusion takes

VIn the case of kicked rotors, the coupling with the oscillatory
perturbation is roughly equivalent to increase the spatial dimension
and transition to the delocalization is observed [14].
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Fig. 1. Log-log plot of MSD versus time for M =1,2,3,5 and 9
at the perturbation strength € = 0.5.

place as the perturbation strength € is varied continu-
ously. We show in Fig. 2b how the exponent a changes
as the perturbation strength € increases at some rep-
resentative numbers of colors, i.e., M = 2, 5 and 10.
In all cases the exponent « increases steeply as € in-
creases, and eventually approaches to unity. As the
number M increases, the approach to & = 1.0 with an
increase in € becomes more steep. However, the tran-
sition from the subdiffusion to the normal diffusion is
continuous, and there seems to be no drastic change.
Further, even though the number of colors M is large
enough, the diffusion process obeys a subdiffusion law
in a very weak regime of €. This is the essentially dif-
ferent nature from the stochastic perturbation, which
induces a normal diffusion however small the pertur-
bation strength may be.

We conclude that the Anderson localization seems
to be destroyed if the number of colors is more than 1.
Even though the localization was not destroyed, the
localization length is extremely enhanced to the level
undetectable by numerical simulations, and the MSD
increases obeying a well-defined subdiffusion law un-
til the numerically undetectable localization length (if
it were) is reached. We call such a phenomenon the
dynamical delocalization [ 12]. A basic question aris-
ing here is whether or not there is any transition from
the localized state to the seemingly delocalized state
in an extremely small regime of €. This is a very dif-
ficult question which is not easy to answer from the
numerical investigations.
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Fig. 2. (a) M and (b) € dependence of the exponent a, where € = 0.5 in (a) and M = 2,5, 10 in (b).

The MSD, which obeys the subdiffusion law for
M > 2 approaches rapidly but continuously to the nor-
mal diffusion law. In the latter regime, we can expect
that the distribution function

P(n.t) = {(|¥(n, D)0 (6)

evolves in the Gaussian form P(n,t) «x exp[—(n —
n9)%/2£(¢)?]. On the other hand, the localization oc-
curs at Ieast in the case of M < 1, in which the wave
packet decays in a linear-exponential form, P(n, t) o«
expl —|n — ng|/£(#)]. In both limits, it is evident that
the distribution function obeys the scaling rule

_En) [ €)
Pnn) = on® (5(@"’“)

at two arbitrary times #; and f; in the stage of the
stationary time evolution (i.e., # > ¢, ). We may expect
that such a scaling rule can be extended also to the
subdiffusion regime. We first examine whether our
expectation is valid or not. To do this examination, we
supposed the distribution P(n,t*) at time ¢*(= 700)
as a standard distribution, and examined whether the
distribution function at ¢* constructed from the one at
an arbitrary ¢ by setting £, = ¢* and #, = ¢ according
to the scaling ansatz

o ) [ ED)
P, 1) = £P (f(t*)n,t).

We observed that such a scaling rule is just satisfied
in a wide range of the parameters € and M. In Fig. 3a

we show some typical examples of the semi-log plots
of the P,(n, t*) obtained at several ¢s in the cases of
M =2,3, and 10 at € = 0.5, where the smoothed dis-
tribution functions are displayed. Except for the sam-
ple at ¢ = 300, which is plotted as a typical example
in the early stage of time evolution, the P;(n, t*)s co-
incide with each other very well, and thus we have
to conclude that P(n,t) is represented by the scaled
form,

P(n, 1) =£(1)" Py (?("3) : (7

We investigate further details of the functional form of
P.(x). Let g(x) be the exponent function defined by
Pi(x) = e~#X)_ Then in the normal-diffusion limit
and in the localization limit, it is g(x) = x2/2 + const
and g(x) = |x| 4+ const, respectively. We thus may ex-
pect that the exponential part g(x) shows in general
the power-law dependence g(x) — go o |x|#, which
interpolates the two limiting situations, where the ex-
ponent B will take a fractional value between 1 and
2 and gy is a certain constant. The unknown param-
eters go and B are determined so that Q(x,g) =
log [ - log Py (x) + go] may fit best to the linear func-
tion of log|x| i.e., Blog|x| + const. In Fig. 3b we
show some examples of the best-fitted Q(x, go). The
fitting is very nice in the significant range of x, which
strongly indicates the validity of the power-law de-
pendence. Existence of such a power-law dependence
1s verified for various combinations of the parameters
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Fig. 3. (a) Typical example of the scaling test of the distribution function, where Py(n,t* = 700) constructed at various ¢ are superposed.
The region bounded by the two arrows indicates the range used for the fitting of (b). To avoid overlapping the data we added —6.0
(—2.0) to the raw value in M =2 (M = 3) for a convenience. (b) Some examples of Q(x, gg) fitted best to the linear function.

€ and M. In conclusion, the scaled form of the distri-
bution function is given by the “stretched” Gaussian
distribution,

Inl \*
P(n,t) o exp | — const X a7 , (8)

except for the range very close to the center of the
distribution. Thus the distribution function is specified
by the two exponents, i.e. & characterizing the tem-
poral growth of the wave packet, and 8 characteriz-
ing its spatial decay. Our scaled distribution function
is of a unified form, which contains the two extreme
limits, i.e. the localization (o = 0,83 E 1) and the
normal-diffusion (a = 1, 8 = 2) as special cases and
in general interpolates them.

The two exponents are not independent and should
be connected at least in the normal diffusion limit and
in the localization limit. The question arising here is
whether or not there exists any correlation between
the two exponents in the intermediate regime. Fig. 4
shows the plot of (a, 8) obtained for various combi-
nations of the two independent parameters € and M.
The precise determination of £ is more difficult than
a, and the former is accompanied by some amount
of error, but it is evident that the two exponents are
strongly correlated in the subdiffusion regime. It is
quite an interesting question whether (a, 8) is on a
single unique curve or not. To answer this question, a
more rigorous numerical test is desired.
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Fig. 4. Plot of (a, B) obtained at various combinations of € and
M. Note that (e, 8) = (0, 1) is the localization limit and (1,2)
is the normal diffusion limit.

The features mentioned above seem to be insensi-
tive to the coupling scheme of the oscillatory pertur-
bation. In fact we observed the same features for the
systematic coupling V;(n) = n, which correspond to
the AC electric field perturbation [15] (in Ref. [16],
the time-dependent property of electron is investigated
in a semiconductor superlattice with disorder driven
by an AC electric field, as a realistic model).
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In conclusion we have shown that the oscillatory
perturbation containing more than one frequency com-
ponent, enormously enhances the one-dimensional
localization length and an anomalous diffusion that
obeys a unified scaling rule is achieved.
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