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Abstract

Energy relaxation dynamics associated with the electron scattering process is investigated with a simple fully quantum
model of an electron-phonon system. It is numerically demonstrated that contrary to traditional theories infinite numbers
of phonon modes are not necessary and just a few phonon modes are sufficient for an irreversible energy transfer from the
scattered electron to the phonon modes to be induced if the scattering potential is spatially irregular. Moreover, the phonon
mode reaches promptly a thermalized state characterized by a well-defined temperature. The possibility that such a process
might be an origin of resistivity in a closed quantum system is discussed.

It is nearly 40 years since the methods for com-
puting electrical resistivity or conductivity have been
established as linear response theories [ 1-3]. In spite
of the great success of these theories, the conditions
for the occurrence of irreversible energy transfer from
electrons to some other degrees of freedom, which is
inevitable when an electron accelerated by an applied
field is to reach a stationary state, are not fully un-
derstood. Conventional theories suppose implicitly or
explicitly the presence of a heat reservoir composed
of an infinite number of degrees of freedom such as
phonon modes. Once we suppose an absolutely con-
tinuous spectrum for the heat reservoir, it becomes an
energy sink, and the whole system can be regarded
as an open system. Thus it is not surprising that scat-
tering of electrons naturally yields a one-way energy
transfer from the electronic system to the reservoir. It
is in such a situation that traditional formulas such as
the Kubo formula [1] or the Landauer formula [3]

allow us to compute transport coefficients. Indeed, the
validity of the Kubo formula for conductivity has been
proved rigorously for a weakly dissipative Lorentz
model [4]. A basic question arising here is whether a
macroscopic number of degrees of freedom is really
necessary for an apparently irreversible energy trans-
fer to be realized in a closed quantum system.

The aim of the present paper is to demonstrate that
contrary to traditional theories only a small number
of phonon modes are sufficient for an irreversible sta-
tionary energy transfer from the scattered electron to
phonon modes to take place under some appropriate
conditions. This fact implies that a stationary one-way
transfer of energy can be realized withina closed quan-
tum system with a small number of degrees of free-
dom isolated from any energy sink or heat reservoir.

There have been some attempts examining the pos-
sibility of occurrence of dissipation in closed quan-
tum systems. Most results give negative answers, be-
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cause the quantum interference effects in general sup-
press the appearance of dynamical decoherence [5-
8]. However, it has been pointed out that some classi-
cally chaotic quantum systems may exhibit effectively
irreversible and dissipative behavior [9]. The origin of
such an irreversible behavior is attributed to the com-
plexity in the phase structure of chaotic wavefunctions
[10].

According to the classical theory of impurity scat-
tering [2], we consider a scattering process by ran-
domly distributed scatterers. The irregularity of the
scattering potential tempts the electronic wavefunction
to localize, preventing the electronic conduction as a
Bloch electron. However, the localized wavefunction
has a phase complexity similar to that of a chaotic
wavefunction [11]. Therefore, if the localization is
destroyed by some mechanism, we can expect that the
electronic conduction is recovered and simultaneously
the phase complexity still remaining in the localized
wavefunction may provide a mechanism leading to a
dissipative behavior.

To test the idea we consider a one-dimensional
tightly binding electronic system (1-DDS) described
by the Hamiltonian

N N
Ho=Y_ [mV(n)(n|+ > [mK(n,m)(m|. (1)
n=1

n#m

The basis set {|n)} is an orthonormalized one and
V(n) is the on-site energy of the electron at the site
n, which varies at random in the range [ -W, W] from
site to site and the transfer energy vanishes unless
the sites n and m are adjacent (K(n,m) = 8, mt1).
The electronic system couples with a small number of
phonon modes represented by the harmonic oscillator
Hamiltonian with incommensurate frequencies w;,

M
Hon =Y (3p} + 10ig)), (2)
j=1

via the interaction Hamiltonian with coupling strength
b
J

N M
Hip = Z Z[[")V(”)<n|]bj(1j- (3)

n=1 j=1

If the number of phonon mode goes to infinity with an
analytical frequency spectrum such as w; o i, then the

phonon system becomes the heat reservoir implicitly
or explicitly supposed in orthodox theories, but in our
treatment the number of phonon modes is finite, i.c.,
typically M = 2 or M = 3. Without the interaction
with phonon modes, the electronic wavefunction is
Anderson-localized because of the randomness of the
on-site potential. However, it may be expected that
the coupling with phonons results in a destruction of
localization [13].

To gain an insight into the role of phonon modes,
we first consider the extreme case in which all the
phonon modes are excited around Fock states with
a large quantum number, say N; (j =1,2,..., M),
then only the Fock states close to |[Nf, N3,...,Nj,) =
HjA:] |N7) are relevant for the interaction process and
the matrix element of the interaction Hamiltonian can
be considered as a constant,

(Nf+n1,...,N;,+nM|Him|N]‘+n'1,...,N;{,+n5M>

N oM Nih
2D VM by S8y (4)
J

n=1 j=1

in the first order approximation (n;, n;- < N7).In this
approximation, the original model becomes equivalent
to a simple time-dependent Hamiltonian perturbed by
a classical driving force oscillating at the frequencies
w; by using the angle representation of the Fock state
[9,14],

N N
Ha(t) =) ImV(n,0)(n| + Y Im)K(n,m) (m|,

n=1 n¥m

(5)

M
V(n,t) =V(n) (1 +Zejcos(cujt—¢j)), (6)
j=l

where ¢; is the angle variable which is taken as a
\/2b2Nsh/w;. The phonons per-
turb the electronic system at multiple frequencies. A
remarkable effect of the periodic perturbation is the
destruction of localization [16]. This delocalization
phenomenon is a key to understanding the occurrence
of spontaneous dissipation to be discussed later.

To observe the temporal behavior of the electronic
wavefunction in the time-dependent 1-DDS, we mon-

itored the time-dependence of the mean square dis-
placement (MSD) (An?) = (¥ (t)|(A — (A))?|¥ (1)),

constant and €; =
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Fig. 1. (a) Time-dependence of mean square displacement of the
electron for monochromatic, dichromatic and trichromatic pertur-
bations, where W = 0.9 and ¢; = 0.5. (b) Time-dependence of
phonon energy corresponding to the three cases.

where i = Z:’:l n|n)(n| is the position operator and
¥ (t) is the time-dependent wave packet. The results
are shown in Fig. 1a for three types of quasiperiodic
perturbation, i.e., monochromatic (M = 1), dichro-
matic (M = 2) and trichromatic (M = 3). It is found
that the wave packet which is localized without the
interaction with phonons spreads beyond the localiza-
tion length as time elapses. The wave packet spreads
according to an anomalous diffusion law such that
(An?) = Dt rather than the normal diffusion law,
and the exponent a approaches 1 from below as M
increases. We call the delocalization phenomenon in-
duced by such a periodic perturbation “dynamical de-
localization”.

Fig. 1b shows the energy absorbed by the phonon
modes during the time evolution of the packet. It is
evident that the absorbed energy fluctuates around the
zero level, which strongly indicates that no significant
energy transfer occurs between phonons and electron.
This is because the phonon diffuses in the ladder of
Fock states symmetrically around the initial Fock state
with the high quantum number N; = N}. It should be
emphasized that the phononic diffusion in the Fock
space is a reflection of the electronic diffusion in real

space.

We thus have found that the delocalization of the
electronic wavefunction by the periodic modulation of
phonon modes surely results in an irreversible diffu-
sion, but there is no energy transfer from the electron.
However, if the phonons are initially prepared in their
ground states instead of highly excited states, the sit-
uation might be drastically changed: suppose that the
phonon is set to the ground state of the Fock states,
then the diffusion of phonons induced as a back-action
of electronic diffusion will occur only in the upper
half direction of the Fock space, and the average en-
ergy of the phonons should increase, which means that
a transfer of energy from electrons to phonons takes
place. A problem is that the perturbation to the elec-
tron from the phonons in the ground states is only the
zero-point vibration due to the quantum fluctuation,
accordingly it is questionable whether such a weak
and virtual effect can trigger a macroscopic diffusion
in both real and Fock spaces.

As the approximation used in deriving the model
(5) is no longer applicable when we examine the
situation mentioned above, we return to the original
model (1) and first examine the monochromatic case
(M = 1), preparing the phonon in the ground state.
To achieve a reliable numerical accuracy, the 6th or-
der symplectic integrator method (typical time step
0.025) was used for the numerical integration of the
Schrodinger equation [15]. The periodic boundary
condition is imposed on both electron and phonons in
order to apply the fast Fourier transformation, where
the site number of electrons and the number of the
mesh of the phonon system are taken typically N =
128 and N, = 64, respectively.

We prepare the electron initially in a sufficiently
high excited state, and compute the time-dependent
electronic energy E(t) = (@(t)|Hq|d(t)) and
the phononic energy Epn(1) = (@(t)|Hpn|P(1))
by the time-dependent wave packet @(t). Be-
fore showing numerical results, we briefly com-
ment on the parameters characterizing the electron-
phonon interactions. The interaction Hamiltonian
(3) can be represented by using creation and an-
nihilation operators of the Fock state, i.e, Hin =

SN SM Um V() (nl1Bia) + a)\/Shw;,  where
Bi = b;/w;. Thus the interaction strength is charac-
terized by two kinds of parameters, B3; and fiw;. The
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Fig. 2. Time-dependence of (a) electronic energy. (b) a phononic
energy and (c) mean square displacement of the electron, where
W=09#%k= %, the perturbation strength €3 = 0.0,0.1,0.4 and the

frequency w; = 2v/2. The energy axes are scaled by Aw) = 0.1.

latter parameter hw; is chosen to be 0.1 from the
observation that the electronic diffusion of the model
(5) becomes maximal at this value [16].

The time dependence of electronic and phononic
energies together with the MSD of the electron are
respectively displayed in Figs. 2a, 2b and 2c as the case
of €2 = 0.0. We can see that the electron and phonon do
not exhibit any significant exchange of energy between
them. Moreover, Fig. 2c tells us that the diffusion of
the initially localized wave packet of the electron is
very weak. The above facts manifest that the zero-
point fluctuation of a phonon in the ground state is not
strong enough for a significant mixing to occur in the
electronic system.

We may expect that the electronic mixing is much
enhanced by adding another phonon mode to the sys-
tem (M = 2). To achieve an efficient mixing, the
second phonon mode should be fully excited. Under
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Fig. 3. Phonon distribution in the Fock space. The parameters are
the same as in the case of €; = 0.4 in Fig. 2.

such a situation we may use the approximation (4) for
the second mode, and the effect of the second mode
can be well approximated by the time-dependent pe-
riodic perturbation with the frequency w;. As shown
in Fig. 2 (€2 = 0.1,0.4), the temporal behavior of
the energy E., E, and MSD in the dichromatic case
is drastically different from the monochromatic one.
It is evident that phonon energy exhibits a nice linear
increase, while the electronic energy decreases mono-
tonically until it reaches an almost zero energy level.
We may judge that a one-way quasi-stationary energy
flow from electron to phonons is realized until the elec-
tronic energy relaxes to a final state, and the flowing
rate of energy increases in accordance with the incre-
ment in the coupling strength ( 81, B2). The final elec-
tronic state with almost zero energy can be regarded
as an equilibrium state extended over all the electronic
energy eigenstates with even statistical weight.

Finally we focus our attention on the quantum statis-
tical properties of phonon modes. Fig. 3 shows semi-
log plots of the probability distribution in the Fock
space of the first phonon mode measured at several
time steps. The plots all compare with straight lines
very well. Hence the distribution in the Fock space is
the Boltzmann distribution

|(n|¥ (1))|* o exp[ —n/kpT (1)1, (7

characterized by the time-dependent temperature 7 (¢)
which rises as time elapses. The Boltzmann distri-
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bution appears only when the linear growth of emit-
ted phonon energy is observed. Thus the formation
of the statistical distribution and the realization of ir-
reversible energy transport must be both sides of the
same stochastization phenomenon which is sponta-
neously induced within a closed quantum system itself
without a coupling with any heat reservoir. It is sur-
prising that such a nonequilibrium statistical behavior
can be observed in a simple closed quantum system.

In conclusion, it has been demonstrated that an ir-
reversible flow of energy from electron to phonons
is induced spontaneously even though the number of
phonon modes is only two. The electron scattered by
an irregular potential emits its energy to the phonon
modes, and moreover the phonons are excited to a
thermal state characterized by a well-defined temper-
ature. We emphasize here again the critical role of the
irregularity in the scattering potential. In fact, if the
scattering potential is periodic, it can be shown that
both electronic energy and phononic energy oscillate
around the initial energy level, and no net energy trans-
fer is observed between electron and phonons. As has
already been remarked, the origin of the irreversibil-
ity is the phase complexity peculiar to the localized
eigenstates. Once the localization is dynamically de-
stroyed by the perturbation of phonon modes, such a
complexity in turn can cause the irreversible energy
transfer to occur.

“Chaos” provides a promising mechanism which
can create sufficient complexities to induce an appar-
ently irreversible behavior in closed quantum systems
[9]. However, as demonstrated in the present paper,
spatial irregularity also plays a crucial role as an origin
of quantum irreversibility when it is combined with a
dynamical interference arising from other degrees of
freedom. Such a mechanism will provide a simple dy-
namical modeling to understand the origin of resistiv-
ity in solid state materials. The next step of our study is
to examine whether the electronic resistivity obeying
Ohm’s law is described by the closed quantum model
proposed here. Some progress is now being made, and
the results will be presented elsewhere [17].

One of the authors (H.Y.) wishes to thank Professor
M. Goda for useful discussions. The present work is
partially supported by a Grant-in-Aid for Scientific
Research provided by the Ministry of Education.
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