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Abstract

We report statistical properties of the distribution of phonon transmission coefficient (PTC) and phonon amplitude in
one-dimensional disordered systems with inverse-power-law structural correlations by numerical calculation. The
distribution of PTC over an ensemble on impurity configuration is expected to have some different properties from that
of standard disordered systems because of its long-range structural correlation. It is shown that the distribution of the
Lyapunov exponent of PTC has a slow convergence different from that of standard disordered systems obeying a normal
central-limit theorem. Tt is also observed that the anomalous distribution of PTC over ensemble has a non-universal

form, different from the standard disordered one.

1. Introduction

Recently it has been established that a one-dimen-
sional disordered system (1-DDS) has a pure point en-
ergy spectrum and its eigenfunctions are exponentially
localized in an infinite system [1,2]. As a result, the
ensemble averaged transmission coefficient of a large
enough system decreases exponentially with respect to
the system size [3]. This statement is established for
standard 1-DDS without regard to electronic or phonon
system [17].

It is also reported recently that disordered diagonal
dimer model corresponding to a one-dimensional tight
binding binary alloy have extended states, the number of
which is proportional to \W for a finite system size
N [4]. In addition to that. a set of extended modes close
to a critical frequency is confirmed in a one-dimensional
dimer disordered harmonic chain [5].

* Corresponding author.

Furthermore, phonon transmission properties have
been studied in superlattices with layer structure and
with short-range correlation (SRC). The sequence of
layers is generated by some kind of Markov process [6].

However, it Is important to mention that most of the
random sequences used up to now in these studies are of
SRC. A Disordered phonon system having an inverse-
power law correlation is studied in this paper. It is shown
that this kind of structural long-range correlation
(SLRC) causes a feature quite qualitatively different fea-
ture from that caused by SRC.

2. Models

The harmonic chain model represented by the follow-
ing equation of motion is dealt:
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where u,, is the displacement from its equilibrium position
of the nth atom and m,’s represent sequences of masses.
The sequence m,’s are generated in this paper by a modi-
fied Bernoulli (MB) map in order to have SLRC. The MB
map is one-dimensinal map proposed in order to reveal
the statistical properties of an intermittent chaos [7],

| X, +227XP 0 <X, <}
Xn+1 :f{Xn):
X, +287'XE ifi<X, <1, (2)

where B is a non-negative bifurcation parameter which
controls the strength of correlation of the sequence X,,’s.
In this report we study only the stationary regime
(1 < B < 2). We use the symbolized sequence made by
a rule, m,=m, (for 0<X,<1?), m,=m, (for
1 < X, < 1), as a sequence of the masses. The mass ratio
R( = my/m,) plays a role in controlling the strength of the
disorder. The sequence, well approximated by a renewal
process, is characterized by the residence time distribu-
tion P(m) ~ m~*?, where § = B/B — 1). The correlation
function C(n) of this symbolic sequence decays exponen-
tially or by power law depending on the value of B,
because it is a chaotic sequence [7]:

Cln) = mom,y ~ {14 (B — P21 s 1 (3)

The bifurcation parameter B = | exhibits an exponential
damping of the correlation.

Assuming the monochromatic time dependence
u{t) = expl — iwt) u,{t =0), we obtain the stationary
equation of motion, — M, = Uy g — 2Uy + Un_ |,
characterized by a frequency . The solution can be
written in terms of the product of the transfer matrix T,
as

N
T fuy U,
) = M(}\/) = T,‘ .
l: Uy :| ]:“0] ,-Dl [“O:l
2 —wm) -1
T’ = t i) . 3
[P ]

We are interested in the asymptotic property of the
amplitude uy for N — = or the corresponding limit
theorem of the product of the matrices.

3. Numerical results and discussions

First we discuss the asymptotic behavior of the solu-
tion of Eq. (4) with respect to the system size when the set
of the initial values wy and u, is given. The Lyaponov
exponent (L-exponent) of phonon amplitude in the sys-
tem of finite size N is defined as 7 = In||M(N)ug|/2N,
where uo = (1. up)” = (1.0)7 in this case. It is worth not-
ing that Furstenberg s theorem can be applied to the
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w

product of matrices, because the sequence is a renewal
process with a finite average residence time {m) [1]. As
a result, the L-exponent in infinite system is positive
definite and sample independent with probability 1 for
any non-vanishing and finite initial vector [8].

Fig. 1 shows the distribution of the L-exponent of
phonon amplitude over 215 samples. This calculation is
performed for the system with a mass ratio of 2 for some
values of squared frequency w?. Contrary to the behavior
of the distribution of ordinary disordered system which
obeys normal central-limit theorem (CLT), the multi-
peak structure is observed in the distributions in the case
of B = 1.7. This kind of anomalous distribution is seen in
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Fig. 1. Histograms of the distribution of the L-exponent of
phonon amplitude in the M B system for some values of squared
frequency »? = 0.1, 2.1 and 4.1 in the cases of B = 1.7 for some
system size N. We have used a mass ratio R = 2 and a mesh of
histogram in a horizontal line is 1072, We can also observe
a multi-peak structure in the distribution for the case of
a squared frequency «° = 2.1 if we use a smaller mesh in hori-
zontal line.
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a critical regime of phase transition in statistical physics.
This anomalous distribution is one of the origins of some
anomalous fluctuation of the L-exponent of finite sys-
tems. We consider the fluctuation of the L-exponent
distribution using the scaling form, \/<{(Ay)?) oc N ¥,
by fitting numerical data. The estimated value of x(B) is
plotted in Fig. 2. For 1 < B < 3, the value of is roughly 4,
implying that the convergent property of the distribution
with respect to N obeys or approximately obeys CLT.
However, for # < B < 2, the distribution converges more
slowly than that obeying the CLT. The slow convergence
corresponds to the anomalous large deviation property
of the symbolic sequence [9].

Next we will study the statistical properties of the
phonon transmission coefficient (PTC) of a finite system
N embedded into an infinite perfect lattice with a con-
stant mass ( = 1) by comparing with those in the stan-
dard 1-DDS.

We study the relation between the cumulants of
distribution for PTC. Some typical relations between
the cumulants for some mass ratios are shown in Fig. 3
[10]. Tt is well observed that some data are plotted on
universal curve regardless of mass ratio in the case of
B = 1.1. This kind of universality has been strongly sug-
gested in electronic random 1-DDS by using several
methods [117].

On the other hand, some remarkable deviations are
observed in the relations between cumulants for some
values of the bifurcation parameter (3 < B < 2) in Fig. 3
when compared with the universal one. We can thus say
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Fig. 2. The exponent k(B) of the power for the standard devi-
ation of the L-exponent of the phonon amplitude as a function
of the bifurcation parameter.

that the distribution of the PTC in MB system does
depend on the bifurcation parameter B controlling the
structural correlation and it also depends on the mass
ratio R = m, (m, = 1).

Although the quantitative theoretical explanations for
these behaviors has not been given, we can say qualitat-
ively that the inverse-power-law correlation in the micro-
scopic sequences survives even in the feature of the whole
system.

It should be noted that the results obtained in the
report are well characterized by the use of renewal pro-
cess, which is a special one in the semi-Markovian class.
Accordingly, it is thus not clear whether the other 1-DDS
with SLRC, for example non-symbolized sequence by
MB map, have similar properties which have got in this
study. We have dealt with a sequence considered only
two points correlation. We expect to evolve the under-
standing the correlated phonon system by using 1-DDS
with any multi-points correlation.
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Fig. 3. Numerical results of the second- and the third-order
cumulant (C,, C,) of the distribution of the PTC at w? =2 as
a function of the first-order cumulant for MB system of the
bifurcation parameter B = 1.7 with m, = | and m, = 0.7, 0.9.
The data of B = 1.1 are added as a reference.
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