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1. Introduction

Recently, we have found an interesting property in An-
derson model with coherently time-dependent perturba-
tion.1–4) In Anderson model, it is well-known that al-
most all eigenstates are localized and the quantum diffu-
sion of initially localized wavepacket is suppressed at the
localization length. When classical coherent perturba-
tion make the localized state delocalized and we call the
states ”dynamically delocalized states”. Moreover, when
we couple a harmonic oscillator with the perturbed An-
derson system in the delocalized state, the energy have
been irreversibly transferred from the electron system to
the oscillator in ground state.2,5–8)

In the present paper we investigate the localization
phenomena in kicked Anderson model and delocaliza-
tion caused by coherent external perturbation, com-
paring with the dynamical delocalization in Anderson
model.2–4,7, 9)

2. Models

The dynamics of kicked Anderson model is given by
Floquet operator,

U = exp(− i
�

T (p̂)

2
) exp(− i

�
V (x)) exp(− i

�

T (p̂)

2
),

where p̂ = −i ∂
∂x

and V (x) is uniformly distributed ran-
dom on-site energy in the range [−W,W ] and T (p̂) =
2(cos p̂ − 1) is hopping terms between nearest neighbor
sites. The value of the wave function is determined in
the middle of the between two successive kicks, and the
periodic boundary condition is assumed. Note the form
is equivalent to second order symplectic integration for
time evolution of general quantum system. It is instruc-
tive to recall the relation between Harper model and
kicked Harper model.10–12)

Furthermore, we consider parametrically perturbed
kicked Anderson model to investigate delocalization phe-
nomena, which Hamiltonian is given as follows:

Hosc(t) = T (p̂) + V (x){1 + ε√
L

L∑

j

cos(ωjt+ φj)}

×
∑

m

δ(t−m),

where the frequency components of the classical coherent
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perturbation {ωj} are taken to be mutually incommen-
surate numbers and the order is O(1).

3. Numerical Results

As far as we know, the localization phenomena of
kicked Anderson model have not been investigated.
In Fig.1 firstly we numerically show time dependence
of the mean square displacement (MSD), m2(t) =
ξ2(t) =< Ψ(t)|x2|Ψ(t) >, of initially localized wave
packet Ψ(x, t = 0) = δx,N/2 in the kicked Anderson
model, where N is system size. It is very interesting
whether a critical value Wc dividing exponentially lo-
calized states and delocalized states is present or not.
More extensive numerical study is necessary to devide
the conclusion.14) It seems that for small W the MSD
grow up unlimitedly in this time scale. We, however,
consider the strongly localized cases to investigate delo-
calization phenomena by coherent pertturbation in this
report. It found that in the localized regime diffusion of
the packets are suppressed and exponentially localized.
The localization length ξ is enhanced as the strength W
of the fluctuation of the randomness, which is equivalent
to strength of the kick, increases as ξ ∝ W−2.7) (See
Fig.2.)
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Fig. 1. Time dependence of MSD of kicked Anderson model with
some potential strength W . The system and ensemble size are
214 and 30 respectively. � =0.125.

Next, we briefly summarize the delocalized phenomena
in the kicked Anderson model with the classical coher-
ent perturbation. As seen in Fig. 3 the wave packet
is delocalized even in the monochromatically perturbed
case (L = 1), and we call the states ”dynamically de-
localized states” in a sense that any stochastic pertur-
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Fig. 2. Localization length as a function of potential strengthW in
the kicked Anderson model. As a reference localization length of
band center of Anderson model are also shown by open squares.
� =1.0

bation is not imposed on the system.4) The diffusion
process is not general normal diffusion but anomalous
diffusion characterized by index α such as m2(t) ∝ tα for
large-time scale. The ε−dependence of the α is shown in
Fig.4. It is worth noting that the delocalization can be
brought about in a quantum system composed of three
degrees of freedom. The situation is same to a paramet-
rically perturbed Anderson model.4) On the other hand,
in ”host-helper system” studied by Ikeda13) more than
three frequency components are necessary to observe the
delocalized phenomena.

2.0x106 

1.5

1.0

0.5

0.0

m 2

20x103 151050  

 0.05
 0.10
 0.20
 0.40

(a)

2.5x106 

2.0

1.5

1.0

0.5

0.0

m 2

20x103 151050
t

 0.05
 0.10
 0.20
 0.40

(b)

Fig. 3. Time dependence of MSD of kicked Anderson model with
(a)monochromatic(L = 1) and (b)dichromatic(L = 2) perturba-
tion. The other parameters are same to Fig.1.
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Fig. 4. ε−dependence of the index α estimated by data in Fig.3(a).

4. Summary

We investigated the delocalized phenomena in the
kicked Anderson model with classical coherent pertur-
bation. The delocalization could be observed even in
monochromatically perturbed cases. We can regard the
delocalization as ”classicalization” of the wave packet by
coupling with the other degrees of freedom.
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