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A universal probability distribution of resistance and transmission coefficient in a
one dimensional disordered system proposed by Mello from a macroscopic point of
view is examined numerically from a microscopic point of view for some tightly bin-
ding disordered systems. Some universal relations between the cumulants are well ob-
served at the band center energy E=0 in a weakly disordered system, while these are
modified at the other energies E#0. They are modified even at £=0 in the strongly
disordered system. It is further found that the universal relations are broken in a
modified Bernoulli system with an inverse-power law structural correlation.

|

Introduction

§1.

Universality in relation to a scaling property
is an important concept in macroscopic
physics. For example, it is well-known in the
critical phenomena that the critical indexes are
insensitive to microscopic details of Hamilto-
nian and they are decided only by the
macroscopic informations; the dimensional-
ity, the symmetry and so on.”

A similar concept appears in electronic
states and transport phenomena in some disor-
dered electronic systems.>® A typical example
is seen in a scaling theory for quantum conduc-
tance of a system with random elastic scat-
terers proposed by Abrahams et al.” It has
been proposed that the bata function of the
conductance g (8=d In g/d In L) has only one
parameter g and it’s functional form is de-
cided only by the dimensionality of the disor-
dered system, in the absence of magnetic field
or spin-orbit interaction. The scaling theory
has been extensively studied theoretically and
numerically .V

Moreover it has been proposed by Mello in
a one dimensional disordered system (1-DDS)
that the distribution P;(p) of the dimen-
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sionless zero temperature resistance p=1/g
over an ensemble of samples of macroscopic
size L scaled by the localization length has a
universal functional form depending only on
the size L.'*'® However, from a microscopic
point of view, neither the exact distribution
functions of the resistance or transmission
coefficient of the microscopic 1-DDS’s of
finite systemsize nor the high-order moments
of the distributions have been obtained.

On the other hand, in another 1-DDS
(called a modified Bernoulli (MB) system) with
an inverse-power low structural correlation, it
has been found numerically that the distribu-
tion of the transmission coefficient in MB
system deviates from the lognormal distribu-
tion and it’s convergent property is more slow
than that of the central-limit theorem
(CLT) 14-16)

Hence we are interested in the applicability
of the universal distribution P,(p) of the
resistance obtained from a macroscopic point
of view to these microscopic disordered
systems.

It is thus the purpose of the present paper to
study numerically the applicability of the
universal  distribution P.(p) in the
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macroscopic theory (M-theory) to some cases
of a one-electron tightly binding model (TB
model). In addition to the case well described
by the universal distribution P, ( p), it is shown
that there are some other situations in which
the universal distribution P, (p) does not hold.
This paper is constructed as follows. In §2
we give a brief review of the macroscopic
theory of resistance distribution in a 1-DDS.
In §3 we numerically discuss the applicable
and non-applicable regime of the M-theory in
the tightly binding electronic system with ran-
dom site energies. Section 4 is given to the
arguments for the non-universal distribution
of the transmission coefficient in the MB elec-
tronic system introduced in refs. 7-9. Section
5 is devoted to the summary and discussion.

§2. A Macroscopic Theory of Resistance and
Transmission Coefficient

For the sake of the discussions in the later
sections, a brief review is given here for the
macroscopic theory of the resistance distribu-
tion on a random phase model (RP model),
proposed by Mello.'*!?

According to the quantum scattering prob-
lem, a dimensionless zero temperature quan-
tum resistance of the 1-DDS embeded in a in-
finite perfect lead is given by,!"!®

[r|?

=10 2.1

where ¢ and r are the transmission and reflec-
tion amplitude. The transfer matrix (7-
matrix) characterizing this random system is

given by
1/t*  —r*/¢*
5= J
—r/t 1/t
where we have used the current conservation

and time reversal symmetry. Furthermore this
matrix is parametrized as follow;'?

O
0 el Yp V1+p 0 e’

(2.2

(2.2)

where the parameters u, v and p vary in the
regimes —n=u, v=n and 0=p=<00. The eqs.
(2.1) and (2.2) are valid even for microscopic
system.
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Because macroscopically identical samples
of a finite size have different resistances de-
pending on the specific microscopic impurity
arrangement in each sample, it is necessary to
introduce a statistical ensemble of systems and
to consider the resistance distribution P.(p)
over the ensemble of systems of a macroscopic
length L. The dimensionless length L is scaled
by the localization length. The corresponding
ensemble of all the 7-matrix forms a noncom-
pact group SU(1, 1). It’s differéntial probabil-
ity is given by dP(S)=P(S)du(S), where
du(S)=@I) *dudvdp is an invariant
measure and P(S) is a probability density.

Now, let’s suppose that two samples of the
macroscopic lengths L and 6L, which have T-
matrices S and dS and probability density
P;(S) and Ps.(0S), are put together into a
combined sample having the transfer matrix
S=8 x 8. (i) Assuming that S and JS are
statistically independent each other (it is ac-
complished in the macroscopic scale much
larger than the structural correlation length of
the electronic system) then the following ex-
pression

PL+JL(§)=S P (8687 )Ps.(8S) du(5S),

(2.3)

is obtained by convolution. (ii) Suppose that
the probability density P, (S) is isotropic, that
is, it depends only on the parameter p.
Moreover, (iii) M-theory proposes an ansatz
that the distribution P, (6S) has to maximize
the following information entropy ¢ with a
constraint of the Ohm’s law,'” { ps;.=JL for
0L« 1, to determine uniquely the form of

Ps(p).
e[Ps 1= —S P;.(8S) In Ps (3S) du(dS).

(2.4)

Under these requirements ((i)-(iii)), the
probability density P, (p) satisfies the follow-
ing Fokker-Planck equation,

3PL(P)__B_( ( +1)3PL(P)

aL  ap ap

). (2.5)

This is the fundamental equation of the M-
theory of resistance derived by Mello.'” The
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equation (2.5) is derived also by some different
approaches.®? The moments of the
resistance can be obtained by solving the
following equation

0
L p™r=nn+1)p™+n*{p" . (2.6)

On the other hand, the transmission
coefficient T(= |¢1?) obeys the following egs.,

0 d
3L &M= TZ ((I—T)_QL(T))
Q.7
n <Tn+l>L}a

(2.8)

0
L T"r=n{(n—=DT"L—

N

n=0 n=0

is considered in order to investigate the
applicability of the universal distributions
P (p) and Q.(T) of macroscopic systems to
microscopic 1-DDS’s. We consider two kinds
of diagonally disordered systems. The first
is the Anderson model (A-model), in which
site energy &, is randomly and uniformly
distributed in the range [— W, W]. The sec-
ond model, which we will refer to as the
discrete model (D-model), is the one in which
the site energy takes only the value — Wor W.

The numerically obtained distributions of
the transmission coefficient 7" and resistance p
for a case of the system (3.1) are given in Fig.
1. Long tails are observed in these distribu-
tions, because these are expected to be the
lognormal distributions for large enough
systemsize L.

Now, we will investigate the moments or
cumulants of the distribution instead of the
distribution itself, because it is rather difficult
to judge whether or not the numerically ob-
tained histgrams itself of the distribution coin-
cides with the universal one. Note that the
larger the systemsize is, the more significantly
the long tail appears in the distribution. As
the contribution to the higher moments are
dominated by the tail of the distribution for
large systemsize, we will calculate numerically

N
=3I e, <nl+ 2 (In) tynsi <n+ 1+ 10+1) t,11,,<nl),
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by using the relation T=(1+p)~!, where
0.(T) and {T"), are probability distribution
and moment of the transmission coefficients.

We call the distributions P, (p) and Q. (T)
following the egs. (2.5) and (2.7) the universal
distributions throughout this paper. The
universal relation between these moments
based on the M-theory is inspected numeri-
cally in some microscopic disordered systems
in the following section.

§3. Numerical Results for Purely Disordered
System

3.1 Models
The following tightly binding one electron
Hamiltonian,

3.1)

only the moments {p), and <{p?>, of the
nesistances, and the first-, second-, third- and
the forth-order cumulants of the transmission
coefficients.

3.2 Numerical results of a universal distribu-
tion

We consider only the case of the band
center energy £=0 in this subsection. Figure 2
shows the numerical results of the relation be-
tween the variance <{(4p)*>=<{p*>—{p*)?
and the mean value < p) for a weakly disor-
dered case, W=0.3, in A-model and D-model
to decimate the unknown parameter; the
localization length. A broken curve in Fig. 2
shows the following relation between the
mean value and the variance derived by
solving the eq. (2.6) {p>r=1/2(e** —1),<{p*>.
=1/6(e% —3e2 +2)),

PP =L pX*=<{p>* @4/3<{p>+2). (3.2

The mean value {p),=1/2(e**—1) coin-
cides with the well-known exponential in-
crease of the resistance with increasing the
length L, obtained by a microscopic approach
by Landauer'” and Abrahams and Stephen?
in RP model and by Stone ef al.?® in the weak
scattering limit of TB model.

Even in the microscopic regime, L« 1 ({p),
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Histograms of the distribution of the (a) resistance p and (b) transmission coefficient T at E=0 for D-

model with £=0, W=0.3. The size of the ensemble is 2'".

« 1), our numerical result obeys the relation
(3.2) derived from M-theory within some
uncertainties. The lognormal distribution ob-
served in Fig. 1 causes the discord in a large
scale, L > 1, as has been stated in §3.1, because
a shortage of the number of samples becomes
a serious problem in the numerical calculation
when the scaled length L increases.

The relation between the values of several
low-order cumulants of the transmission
coefficient are given in Fig. 3, in which C, in-
dicates the n-th order cumulant. Each relation
between the values of C, and C; (n=2, 3,.4)
looks like being on a common curve.

Although we cannot draw the corresponding
curves based on M-theory, because eq. (2.8) is
unsolvable in the sense that the higher order
moment {7""!), is necessary in order to ob-
tain the moment <7°"),, we can check whether
or not our numerical results satisfy the follow-
ing relations derived from eq. (2.8).

9 —_— 2
3L {Te=—<Ts, (3.32)

ad
BI<TZ>L=2 <T2>L_4<T3>L’ (3.3b)

;L— (T3, =6<T*>,—9<{T*,. (3.3¢)
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Fig. 2. Numerical results of the second-order
cumulant {(4p)?>=<p?>—<p>* of the distribution
of the resistance as a function of the mean value < p>
for the case of E=0. The broken line shows the eq.
(3.2).
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Fig. 4. Numerical results for the relations (3.3a) (O),
(3.3b) (), and (3.3¢) (0) at E=0 by the numerical
finite difference for D-model with W=0.3.

Figure 4 shows the numerical plots of the
left hand side (lhs) versus rhs in egs. (3.3a)-
(3.3c) by means of the finite difference based
on the numerical results. These data are plot-
ted around the broken line describing
lhs=rhs. Accordingly, we can say that at least
the relations between these several low-order
moments of the distributions of the transmis-
sion coefficient and resistance agree well with
those based on the M-theory, irrespective of
the potential strengths of the site energy in the
weakly disordered regime and the model (A-
model or D-model) in the case E=0.

Moreover, as the lower-order moments of
the transmission coefficient include the infor-
mation of the higher-order moments of the
resistance, we can suggest that the resistance
has a universal distribution P;(p), regardless
of the potential strength and of A-model or D-
model in a weakly disordered regime at the
middle energy E=0.

~ Fjg. 3. Numerical results of the second-, third-, and

the fourth-order cumulants of the distribution of the
transmission coefficient 7 at E=0 as a function of the
first-order cumulant. The C, shows the n-th order
cumulant of the distribution of the transmission
coefficient.
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3.3 Numerical results
distributions

In this subsection we propose the case
violating the universal distribution P, (p). For
this purpose, we indicate the deviation of a
few cumulants of the distribution of the
transmission coefficient from that of the D-
model with E=0 and W=0.3 (we call it the
standard distribution) discussed in the
previous subsection and expected to have the
universal distributions P, (p), Q. (T).

(A) Figure 5 shows some internal relations
between the cumulants for the case of £=0.5
and W=0.3 of the A-model and D-model.
Each relation between the values of C, and C,
(n=2, 3, 4) looks like being on a common
curve as in the case of Fig. 3. The curves in
Fig. 5 (for the case of E=0.5), however, are
different from those in Fig. 3 (for the case of
E=0) in the microscopic regime, <{7)>0.5
(K p>r<1). Figure 6 indicates the relation be-
tween the cumulants for several energies in D-
model with W=0.3. The case of E#0 is
equivalent to a non-symmetric distribution of
the site energy €,. Accordingly, we can say that
the effect of it’s microscopic non-symmetric
property survives in the small scale, {7 ) >0.5,
and it disappears in the large scale limit.

(B) Moreover, when we consider the rela-
tions between the cumulants in a strongly
disordered case (at E=0 and W=x=1.0),
different functional forms from those of a stan-
dard distribution, which are partly shown in
Fig. 6, are observed. This difference is par-
tially suggested by a difference between the
functional forms of the mean value < p>; ob-
tained by M-theory and by Stone et al. in the
strongly disordered case.?

In the above two cases, (A) and (B), we can
guess that the assumptions (ii) or (iii) of the
M-theory in §2 are violated.

In addition, it is easy to image that there is a
different distribution from the universal one
P,(p) for the off-diagonal disorder model
(¢.=0), because the requirement (i) is not ac-

of non-universal

Xia=f(XD=X1+2"71X7"
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Fig. 5.
the fourth-order cumulants of the distribution of the
transmission coefficient 7 at E=0.5 as a function of
the first-order cumulant.

Numerical results of the second-, third-, and

complished on account of the correlation be-
tween the nearest neighbour sites.?*

§4. Modified Bernoulli Electronic System

We study in this section the distribution of
the transmission coefficient in a disordered
system with a long-range structural correla-
tion.

These systems are described by a sequence
{X.} generated by the following deterministic
rule,

0<Xr=1/2)

Xr=2071-xDf (A/2<Xrs)),

X, =QXi-1)w,

4.1



Fig. 6. Numerical results of the second- and the third-
order cumulant of the distribution of the transmis-
sion coefficient T for various enrgies of D-model with
W=0.3. The symbol(><) denotes a strongly disor-
dered case of D-model at E=0 with W=1.0.

where B is a non-negative bifurcation
parameter controlling the structural correla-
tion.

We also use the symbolic sequence {Y,}
coarse grained by the rule; Y,=—W for
0<X,<1/2and Y,=W for 1/2<X,=1. We
call these systems {X, } and {Y, } modified Ber-
noulli system (MB system) when the sequence
{X,} or {Y,} is regarded as the site energy se-
quence {¢,} in eq. (3.1).

The properties of the MB system has been
studied in detail ref. 26. It has turned out that
the correlation functions <X X+n», <Y: Yi+n)
decrease, obeying an inverse-power law with
respect to the distance n for 1<B<2.

Some typical distributions of the transmis-
sion coefficient are given in Fig. 7. We study
the relation between the cumulants of
transmission coefficient, as has been done in
§3.3. Some typical relations between the
cumulants are shown in Fig. 8 and Fig. 9.
Remarkable deviations are observed in the
relations when compared with those of the
standard distribution. We can say that the
distribution of the transmission coefficient in
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Fig. 7. Histograms of the distribution of the transmis-
sion coefficient T at E=0 of the Modified Bernoulli
system with B=1.7 for some systemsize N.

MB system does depend on the bifurcation
parameter B controlling the structural correla-
tion, on the potential strength W, and also on
the case of {X,} or {Yx,}.

Although the quantitative theoretical ex-
planations for these behaviours has not been
given, we can say qualitatively that the assump-
tion (i) in §2 is broken in MB system, that is,
the inverse-power law correlation in the
microscopic sequences {X,} and {Y,} sur-
vives even in the macroscopic regime.

§5. Summary and Discussion

We have studied numerically the moments
and cumulants of the distribution of the
transmission coefficient and resistance in some
tightly binding 1-DDS’s, and we have ob-
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Fig. 8. Numerical results of the second- and the third-
order cumulant of the distribution of the transmis-
sion coefficient T at E=0 as a function of the first-
order cumulant for MB system {Y,} with W=0.3
and with the bifurcation parameter B=1.5(A) and
1.7( D). The circle (O) shows the case of the D-model
as a reference.

tained the following results.

(1) It is confirmed that the universal
distribution P, (p) or Q.(T') derived in the M-
theory is well realized at the middle energy
E=0 of the A-model and D-model in the
weakly disordered case, regardless of the
detail of the potential strength. The above
universality holds even in the microscopic
regime characterized by an atomic length
scale.

(2) On the contrary, in the case of non
vanishing energy E#0, the distributions are
different from the universal ones P,(p),
Q.(T) in the microscopic regime <7 >>0.5.
Also in the strongly disordered case at E=0,
the distributions are different from the univer-
sal ones. It is suggested that the requirement
(ii) or (iii) in §2 is not satisfied in these cases.

(3) In addition, in the MB system with an
inverse-power law structural correlation the
distributions are extremely different from the
universal ones P.(p) and Q.(T). It is sug-
gested qualitatively by a simple physical con-

(Vol. 60,

Fig. 9. Numerical results of the second- and the third-
order cumulant of the distribution of the transmis-
sion coefficient 7 as a function of the first order
cumulant for MB system {Y,} (E=0, B=1.7) with
the potential strength W=0.1(4), 0.3 (0), and those
for MB system {X,} for the potential strength
wW=0.3 (0).

sideration that at least requirement (i) is not
satisfied in MB system.

Finally, let’s discuss on the relation between
the conductance fluctuation numerically
studied by Giordano®” and our numerical
results. He proposed that the cumulants of the
conductance are universal functions of the
average (g, in both one and two dimensions.
However, we can say from the results in §3.3
and MB system that this universality comes
true only for limited cases of 1-DDS’s.
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