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Dynamical delocalization in one-dimensional disordered systems with oscillatory perturbation
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The effect of dynamical perturbation on the quantum localization phenomenon in a one-dimensional disor-
dered quantum system~1DDS! is investigated systematically by a numerical method. The dynamical pertur-
bation is modeled by an oscillatory driving force containingM independent~mutually incommensurate! fre-
quency components. ForM>2 a diffusive behavior emerges and in the presence of the finite localization
length of the asymptotic wave packet can no longer be detected numerically. The diffusive motion obeys a
subdiffusion law characterized by the exponenta asj(t)2}ta, wherej(t)2 is the mean square displacement
of the wave packet at timet. With an increase inM and/or the perturbation strength, the exponenta rapidly
approaches 1, which corresponds to normal diffusion. Moreover, the space-time (x-t) dependence of the
distribution functionP(x,t) is reduced to a scaled form decided bya and another exponentb such that
P(x,t);exp$2const3(uxu/ta/2)b%, which contains the two extreme limits, i.e., the localization limit (a
50, b51) and the normal-diffusion limit (a51, b52) in a unified manner. Some 1DDSs driven by the
oscillatory perturbation in different ways are examined and compared.
@S1063-651X~99!05304-0#

PACS number~s!: 05.45.2a, 72.15.Rn, 71.55.Jv, 71.23.2k
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I. INTRODUCTION

The localization phenomena in one-dimensional dis
dered quantum systems~1DDS! have been extensively stud
ied for several decades@1,2#. It is well known that almost all
the eigenstates are localized under the presence of any
order @3#. The detailed features of localization, of cours
depend upon the nature of a random potentials, and the q
tum diffusion of a wave packet in the 1DDS is in gene
suppressed within a finite length by the interference effe
The localization is regarded as a result of the coherent b
scattering by irregularly distributed scatterers@2#. There are
generally two length scales in the disordered quantum
tems; one is the mean free path and the other is the loca
tion length @4#. The time dependence of the mean squ
displacement~MSD! of an initially localized wave packe
grows ast2 within the mean free path. Such a growth
suppressed as the packet length reaches the second scal
the localization length@5#. Between the two scales, it is sup
posed that an intermediate regime exists in which the M
grows according to a power lawta (0,a<1). However,
the existence of such a diffusive regime has not been es
lished in the ordinary 1DDS, since these two lengths
almost of the same scale@1,2#. Even in disordered systems o
more than one dimension, for which the localization leng
may be much enhanced and may even become infinite,
existence of such an intermediate regime is not very cl
although some indications have been obtained@6,7#. Regard-
less, a finite localization length means that the memory
the initial state is maintained in the 1DDS even for a lon
time scale, and there are no stochasticization proce
which result in statistical behavior. In short, the 1DDS is n
ergodic, and therefore exhibits no mixing property, i.e.,
decay of correlation. Such features may be, however, dra
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cally changed if the localized system is coupled with diffe
ent dynamical degrees of freedom@8,9#. This is the subject
we will discuss in the present paper.

An extreme case is that the 1DDS is coupled with a h
reservoir composed of an infinite number of degrees of fr
dom. In this case the influence from the heat reservoi
modeled by stochastic forces applied to each of the lat
sites @10,11#. Such a perturbation will destroy the quantu
coherence which is the origin of the Anderson localizatio
and the wave packet diffuses beyond the intrinsic locali
tion length. In most theoretical treatments the stocha
forces are modeled by Gaussian noise with a very short
tiotemporal correlation@12,13#. In such a class of stochasti
lattice model a classical normal diffusion in which the MS
grows linearly with time occurs, as is naturally expect
@12#. However, the diffusion coefficient is decided only b
the parameters characterizing the statistical properties of
stochastic force and does not explicitly depend upon
length scales of Anderson localization. This fact implies th
the generic dynamical structure inherent in the localization
entirely destroyed by the stochastic perturbation. In su
class of models, the electronic stochasticization resulting
diffusion is ‘‘forced’’ by the externally introduced stochas
ticity.

A more interesting scenario of the electronic stochast
zation is the possibility that the stochasticization mechan
is spontaneously organizedin the systemwithout any help of
the external stochastic source. A possibly simplest situation
is modeled by the 1DDS perturbed by a classical oscillat
force with several frequency components. It is known th
such a class of system is equivalent to an autonomous
tem, that is, the 1DDS coupled with linear oscillators w
the same set of natural frequencies@14#, and the linear oscil-
lator can be identified with a highly excited quantum ha
5214 ©1999 The American Physical Society
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monic oscillator @9#. Thus the proposed model may b
looked upon as an isolated autonomous system compose
1DDS and a finite number of linear oscillators.

A practical example of an oscillatory perturbation is t
ac electric field. Mott and Davies discussed the conductiv
of ac-driven disordered systems by using the Kub
Greenwood formula@15,16#. Later, Wilkinson also deal
with the response of an electron to low frequency pertur
tion from the viewpoint of the nonadiabatic transition, whi
is different from Mott’s theory@17#. However, they are both
based upon the perturbation theories, and in applying
perturbation theories the stochasticization of an electro
state has implicitly been supposed. Indeed, the results of
turbation theories, which are based upon the short-time
pansion, are significant only if any stochasticization mec
nisms destroy the dynamical coherence within the time s
under consideration, but the origin of the stochasticizatio
not explained within the framework of the perturbation the
ries. On the other hand, Willkinson concludes that the s
chasticization in disordered quantum system is inhibi
even if it is perturbed by an ac field, because of the locali
tion effect in the adiabatic Floquet basis set@18#. The dy-
namical effects of the coherent oscillatory perturbations
the disordered electronic system are still very unclear.

On the other hand, the oscillatory perturbation may wo
for the electron as if there were a lattice vibration rather th
a coherent ac field. Whether the oscillatory perturbation a
as if there is a coherent ac electric field or as if there is
incoherent lattice vibration will depend on the number
independent frequency components. In the present pape
systematically investigate the effect of oscillatory perturb
tions on the 1DDS. In particular, we are interested in how
number of frequency components, i.e., the number of
grees of freedom, composing the perturbation influences
dynamical properties of the system. In our preliminary
ports, we have shown that the 1DDS is very sensitive t
coupling with systems with other degrees of freedom a
that a periodically perturbed 1DDS exhibits a diffusive b
havior over an unexpectedly long-time scale@8,9#. Decoher-
ence in quantum systems induced by the coupling with o
systems with a small number of degrees of freedom is
important subject in quantum phenomena@19–21#. In par-
ticular, there have been some examples of classically cha
quantum systems~so-called quantum chaos systems! in
which stochasticization is self-organized and the locali
tionlike effect can be destroyed spontaneously due to
coupling with a system with other degrees of freedom. F
example, classical chaotic diffusion, which is suppressed
an Anderson localizationlike mechanism in the correspo
ing quantum systems@22#, can be restored by a very wea
coupling with systems with other degrees of freedom@23–
27#, which implies that the localization effect is very wea
against a coupling with systems with other degrees of fr
dom. In the case of kicked rotators, the coupling with os
latory perturbation is roughly equivalent to an increase in
spatial dimension and transition to the delocalization is
served@24,25,34,35#.

More generally, whether the classical counterpart o
quantum chaos system exhibits diffusion is not essential:
quantum chaos system may restore the mixing prope
through a phase-transition-like behavior by a very we
of
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~more precisely, decided by\ and thus classically negligible!
coupling with a small number of linear oscillators@28#.

We may thus expect that a similar stochasticizat
mechanism is ‘‘self-organized’’ in the Anderson localize
1DDS when it is coupled with some other degrees of fr
dom. On the other hand, it should be noted that the 1DDS
essentially different from the quantum chaos systems in
following sense: the latter have their classical counterp
exhibiting a well-defined normal diffusion, or more gene
ally, the mixing properties in the limit of\→0, but the
former in general do not have such classical counterpa
Thus the stochastic behaviors which might be realized in
dynamically perturbed 1DDS will be different from thos
observed in the quantum chaos systems.

In the present paper we numerically investigate the ti
evolution of the wave packet in 1DDS under the presence
oscillatory perturbations and investigate how the effect of
perturbation changes the fundamental nature of Anderson
calization. It is shown that the perturbation drastically i
creases the localization length up to a level undecidable
numerical calculations and a diffusion behavior is observ
over a wide range of the control parameters. The main re
is that the diffusion is not a normal diffusion but an anom
lous diffusion, and moreover the spatiotemporal behavior
the probability distribution function is reduced to a simp
scaling form. The outline of the present paper is as follow

In Sec. II the model system investigated in the pres
paper is introduced. The model system is a one-dimensio
tightly binding system perturbed by an oscillatory force co
posed of incommensurate frequency components of the b
model which are also discussed, and the method of num
cal simulation is explained briefly.

In the next section, we investigate the wave packet
namics exhibited by the basic model system. First, we sh
that the localization length is enhanced but is finite in t
case of monochromatic perturbation. However, if the num
of frequencies is more than one, the localization length
drastically enhanced to a level undetectable by the nume
method. It is shown that the wave packet spreads with
limit according to an anomalous diffusion process charac
ized by a certain exponent. How the characteristics of s
an anomalous diffusion depend on control parameters s
as the perturbation strength and the number of incomme
rate frequencies is explored in detail. The latter half of S
III is devoted to the spatiotemporal characterization of
probability distribution function which is responsible for th
anomalous diffusion. Analyzing the results of extensive n
merical simulation it is found that the probability distributio
function reduces to a scaling form, which is characterized
two exponents: one is the exponent of the anomalous di
sion, and the other is an exponent describing the spatial
cay of the distribution function. The scaling function has
‘‘unified form’’ in the sense that it contains the two case
i.e., the Anderson localization and the normal diffusion
the two extreme limits.

Finally, in Sec. IV, some other models different from th
basic model in the scheme of the coupling with the osci
tory perturbation are examined, and the diffusion proper
are investigated in comparison with the basic model inve
gated in Sec. III.

The last section is devoted to summaries and discussi
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II. MODELS AND METHOD OF SIMULATION

A. Models

The model we consider in the present paper is a o
dimensional tightly binding electronic system perturbed
periodically oscillating forces. The Hamiltonian is given b

H~ t !5 (
n51

N

un&@V0~n!1V1~n,t !#^nu

1 (
nÞm

N

un&K~n,m!^mu, ~1!

V1~n,t !5V1~n!
e

AM
(
j 51

M

cos~v j t !. ~2!

The basis set$un&% is an orthonormalized one representi
lattice sites, andV0(n) andV1(n) are the on-site energies o
an electron at the siten, V0(n) varies at random in the
range @2W,W# from site to site, and the transfer energ
vanishes unless sitesn and m are adjacent@K(n,m)
5dn,m61#. The strength of the site energy is fixed mainly
W50.9 throughout the present paper, and we set\51 with-
out loss of generality. We set the system size and ensem
size 1024 and 20–50, respectively, throughout the pre
paper.

The oscillatory perturbation is polychromatic and
composed ofM different frequency components~colors!, and
the frequencies$v i% are chosen to be mutually incommens

rate, and are typically given asv151, v2511A 2
25 , v3

511A 3
25 , . . . , and so on.

As is shown by Eq.~2!, we have supposed that all th
amplitudes of the periodic components have the same va
and e characterizes the strength of the oscillatory pertur
tion. In fact, the long-time average of the squared pertur
tion amplitude is given by

^V1~n,t !2& t /V1~n!25
e2

2
, ~3!

where^ & t indicates the long-time average. We are interes
in how the periodic perturbations influence the quantum
ture of the 1DDS as the number of colorsM and/or the per-
turbation strengthe are changed.

We are most interested in how the oscillatory perturbat
V1(n,t) influences the localization phenomena due to
randomness of the on-site potentialV0(n), which we call the
perturbed localization problem. To investigate this kind of
problem, we may choose the simple form of the perturbat

V1~n!5V0~n!. ~4!

We call this model the localization model (L model! because
the Anderson localization dominates in the limit ofe→0.
Most of the present paper is devoted to the study of thL
model. A similar model with oscillatory perturbation applie
to the off-diagonal part has been used by several aut
@34,35#.

We can also study other physical situations with o
model ~1!, ~2!. In the limit
e-
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t
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r

V0~n!50, ~5!

the system becomes the free electron model if the oscilla
perturbation is switched off. By switching onV1(nt) our
model describes a free electron scattered by quasiper
cally oscillating irregular potentials. This situation is als
interesting as it is connected with the problem of a ballis
electron scattered by dynamical impurities. We refer to t
model as the ballistic model (B model!.

In addition to these two cases, we can consider a part
lar case where the perturbation amplitude does not vary
regularly from site to site but depends systematically on
sites as

V1~n!5n. ~6!

We call such a model the AC model, because the perio
perturbation models the effect of an ac electric field. W
this model we can study how localization is influenced by
polychromatic ac field. There have been some studies on
diffusion of the electrons under the influence of the ac fie
but the time-dependent perturbation theory@15# or the adia-
batic perturbation theory have been used in these treatm
@17#. Such theories implicitly assume the destruction of d
namical coherence in the system and cannot deal with
fully dynamical evolution process. Very recently, Diezet al.
have investigated the time-dependent property of an elec
in a semiconductor superlattice with disorder driven by an
electric field, as a realistic model@36#. Whether an intrinsic
diffusion occurs in the 1DDS with the ac field is still an ope
problem.

We numerically investigate the AC model in Sec. IV
comparison with theL model.

B. Method of simulation

We numerically integrate the following time-depende
Schrödinger equation under periodic boundary conditions

2 i
]C~n!

]t
5C~n11!1C~n21!2V~n,t !C~n!. ~7!

The Planck constant\ is chosen to be 1 without loss o
generality. We explain the method of integration we ha
used in this paper briefly. By using the continuum coordin
x̂ and the momentum operatorp̂52 i ]/]x in Eq. ~7! the
Hamiltonian is rewritten as

Ĥ~ t !5e]/]x1e2]/]x1V~x,t ![T̂1V̂~ t !, ~8!

where

T̂52 cos~ p̂/\!, V̂5V~ x̂,t !. ~9!

The wave functionC(x,t) at the sitex and the timet is
expressed by using a time evolution operator,

C~x,t !5Û~ t,0!C~x,0! ~10!

5T1 expS 2
i

\E0

t

dt8Ĥ~ t8! DC~n,0!, ~11!
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whereT1 is the time ordering operator. It is known that b
using the Baker-Hausdorff-Campbell theorem the unitary
erator Û can be approximated by an operator given by
alternative product of thep-dependent operator an
x-dependent operator:

Û~Dt,0!')
i

k

exp~ci T̂!exp@diV̂~x,eiDt !#, ~12!

where the coefficientsei5( j 51
i cj . If the set of the coeffi-

cients ci and di is chosen appropriately, the error of th
product operator can be made as small asO(Dtk11). See
Refs. @29–33# for the details of the coefficients. Such a n
merical scheme of integration is called thekth-order sym-
plectic integrator~SI! scheme and it enables us to do t
numerical integration of the Schro¨dinger equation at an ex
tremely high numerical accuracy. Further, another advan
of using such an operator is that the norm of the wave fu
tion is exactly conserved because it is a unitarity operato

The numerical procedure of operating the SI can be d
tically sped up by using the fast Fourier transformati
~FFT! and the inverse FFT. When anx-dependent operator i
applied, the wave function is represented by the coordin
~x! representation in which thex-dependent operator is diag
onal. After applying thex-dependent operator, the wav
function is transformed into thep-represented one by usin
the FFT, and thep-dependent operator is operated on t
diagonal form. Finally the resulting wave function is tran
formed back into thex representation by the inverse FFT. B
repeating such procedures numerically, a single operatio
the SI is achieved. Since our system is defined on a disc
lattice, if we take the number of lattice sitesN52m (m:
positive integer! and impose the periodic boundary cond
tion, the FFT and the inverse FFT can be executed exa
except for round-off errors. This is the remarkable advant
of applying the FFT-SI scheme to our lattice problem. As
kth-order SI scheme is composed of 2k/2x and p operators
and the CPU time for a single application of the FFT alg
rithm is proportional toN ln N, the CPU time required for a
single step of thekth-order FFT-SI scheme is estimated
N ln N32(2k/221). See Ref.@33# for more detailed infor-
mation on the computer performance of the FFT-SI sche

As mentioned above, no significant error emerges at
FFT and the inverse FFT. Thus the numerical error com
only from the approximation by the symplectic integrato
The accumulated error during thel step iteration of the
kth-order SI is expected asEk(l )}(Dt)k11l . The error is
predominantly controlled by the size of time step, but th
are some other extra factors that significantly influence
accumulated error, for example, the amplitude of the on-
irregular energy.

We compare in Fig. 1 some typical numerical results o
tained by using the FFT-SI schemes of different order w
several magnitudes of the time step in order to demonst
how we have decided the size of the time step and the o
of the SI scheme. Here we used theL model without the
oscillatory perturbations (e50), and so the wave function i
Anderson localized. Figure 1 shows the time dependenc
the mean square displacement for typical samples calcul
by second- and sixth-order SI schemes at a relatively la
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size of time step,Dt50.9. It is obvious that the wave packe
spreads more than the case of the sixth-order scheme i
second-order SI scheme is used.

Further, we have confirmed that the latter temporal e
lution of MSD coincides with one obtained at the smal
size of time step,Dt50.05, and further decrease in the si
of time step no longer gives significant change in the tim
evolution data. Note also that even the second-order sch
almost reproduces the result of the sixth-order scheme
Dt50.05. From these results, we can conclude that the si
order FFT-SI scheme atDt50.05 achieves a reliable numer
cal accuracy. The advantage of our model is that the num
cal simulation can be done precisely over a very long-ti
scale because of the one-dimensional nature of our mo
and quantitatively accurate information on the quantum d
fusion of the wave packet can be obtained.

It is also worthwhile to note that the eighth-order sche
is not effective for the calculations at double precision.
quadruple precision is available in the numerical simulati
the eighth-order scheme might become more efficient.

III. DYNAMICAL DELOCALIZATION

In this section we present a systematic investigation of
diffusion properties of theL model. We only consider time
evolution in which the wave front of the packet does n
reach the boundary in order to avoid the influence of bou
ary condition and finite size effect. In fact, extending t
system size has confirmed that the boundary condition ha
effect in some cases. This will also be confirmed by t
shape of the wave packet reported in Sec. III D.

A. Monochromatic perturbation „M 51…

To observe the temporal behavior of the electronic wa
function in theL model, we monitor the time dependence
mean square displacement of the wave packet;

FIG. 1. Time dependence of square displacements for a sam
of L model without perturbation. We use second-order and six
order SI schemes with time meshDt50.9.
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m2~ t !5j~ t !2[^ŠC~ t !u~ n̂2^n̂&!2uC~ t !‹&V , ~13!

where n̂[(n51
N nun&^nu is the position operator, and th

angle brackets,̂ &, ^ &V , mean the quantum and the e
semble averages, respectively. Usually we take the ense
average over 20 different samples.

We first investigate the perturbation strength depende
of the MSD as a function of time in the case of monoch
matic perturbation (M51). Figure 2 shows the MSD and it
logarithmic plots at several perturbation strengths. App
ently the wave packet spreads beyond the width of
asymptotic wave packet of the unperturbed case~i.e.,
e50). Observing the diffusive behavior in more detail, t
increasing rate of MSD seems to be suppressed as the
elapses.

To confirm whether the diffusive behavior continues
not, we examined a simulation on an extremely long-ti
scale by using a larger size of time step,Dt50.5, which is
the upper limit that can reproduce the reliable data~typically
the data atDt50.05 in Fig. 2!. Figure 3 shows the resul
Evidently, the diffusive behavior on the earlier time sca
shown in Fig. 2~b! saturates at a certain level, and we have
conclude that the localization is not destroyed by the mo
chromatic perturbation. However, we stress that the local
tion length of the asymptotic wave packet is much enhan
by the monochromatic perturbation. Here we show in F
3~b! the e dependence of the enhanced localization len
obtained from the data of Fig. 3~a!. First, as the perturbation
strength increases, the enhanced localization length als
creases. However, when the strength exceeds a certain l
the increase of the localization length of the asymptotic w
packet is suppressed and the localization length in turn
gins to decrease. As will be shown later, the suppressio
the enhancement of the localization length of the asympt
wave packet in the largere regime is a general feature of th
L model.

Finally we comment on the relation between the pres
results and the ones presented in our preliminary report@8#.
In a report we dealt with the same model in a slightly diffe

FIG. 2. ~a! Time dependence of MSD in cases driven by mon
chromatic perturbation (M51) with some perturbation strength.
ble
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ent condition, and we concluded that the time dependenc
the MSD is a normal diffusion.~Precisely, the initial phase
of the perturbation was different.! However, the time scale o
the numerical simulation is much shorter than the pres
simulation, and so the conclusion is not correct, but
early-stage temporal diffusion coefficient decided in the d
fusive time scale in the preliminary report provides som
insight into the dynamical feature of the monochromatica
perturbed 1DDS. In fact we numerically estimated the p
turbation strength dependence, and found that the diffus
coefficient does not obeyD}e2, and this fact implies that
even the early-stage diffusion cannot be explained by
perturbation theory, which has been used by several aut
@15,18#.

An important property of the monochromatically pe
turbed system is that, unlike the 1DDS without the dynam
cal perturbation, the two fundamental scales, i.e., the m
free path and the localization length, seem to be well se
rated, and between the two scales the MSD exhibits a di

-

FIG. 3. ~a! Same data as Fig. 2 except for the size of time s
Dt50.5. ~b! The e dependence of the enhanced localization len
estimated by MSD in~a!. The estimation of enhanced localizatio
length of the asymptotic wave packet is based on time average
an interval (T58000–10 000! after saturation.
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FIG. 4. ~a!–~c! Time-dependent MSD ofL model for polychromatic color (M51 –13! at the perturbation strength,e50.5, and~d!, ~e!
its logarithmic plots.
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sive behavior. This is the reason a diffusive behavior is
served in our preliminary report. Precisely, the early-sta
diffusion is not a normal diffusion. Indeed, Fig. 2~b! demon-
strates that the logarithmic plots of MSD vs time are
straight lines in the early stage, but the tangents of
straight lines are all less than 1. This fact means that
transient diffusion is a subdiffusion rather than a normal d
fusion. We note that all the features of diffusion are ve
similar to the ones observed in a 2DDS, where the t
length scales are well separated@1,6#. Subdiffusion is a ma-
jor characteristic of the diffusion process observed when
number of frequenciesM is increased to more than one. Th
will be discussed in detail in the next subsection.

We have shown that a localization in 1DDS is sensitive
the external monochromatic perturbation, but the monoch
matic perturbation is not adequate for destroying the loc
ization perfectly.

B. Polychromatic perturbation „M>2…

The question we examine in the present subsection is
the temporal behavior of MSD changes when the oscillat
perturbation contains more than one frequency compon
First we investigate the change of temporal behaviors
-
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MSD as the number of frequencies~colors! is increased with
the perturbation strength being kept at a relatively sm
fixed value (e50.5). In Figs. 4~a!–4~c! the time dependence
of the MSDs is shown for the several polychromatic pert
bations with different numbers of colors (M51,2,. . . ,13).
It is obvious that the wave packet, which is localized witho
the perturbations, spreads beyond even the enhanced l
ization length of the asymptotic wave packet of the mon
chromatically perturbed 1DDS (M51). As the number of
frequenciesM increases, the diffusion of the wave packet
more enhanced.

The increasing rate of MSD increases monotonically w
the number of colorsM, but it begins to be suppressed asM
exceeds 3, and begins to saturate aboveM;5. It seems that
unlike the cases of monochromatic perturbation the diffus
behavior continues, and that no indication of localization
observed at least within the time scale we examined in
numerical simulation. Absence of localization has been c
firmed for someM ’s by extending the time scale of simula
tion up toT510 000 @m2(t);40 000#.

Although the MSD seems to increase without limit, th
increasing rate of MSD in general decreases as the t
elapses, and so the local diffusion coefficient decrea
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gradually in time. To investigate the nature of diffusion
more detail we show in Figs. 4~d! and 4~e! the logarithmic
plot of MSD versus time. Except for the initial regime o
time evolution where the transient effect still remains, all t
data except forM51 align along straight lines with tangen
less than 1, and so we may conclude that the MSD obe
well-defined subdiffusion law:

m2~ t !5Dta ~0,a,1!. ~14!

The subdiffusion shown in Fig. 4 is qualitatively differe
from the one observed in the monochromatic case in
sense that the localization length of the asymptotic w
packet seems to be infinite, or, that is, at least, drastic
larger than the monochromatic case. The exponenta to-
gether with the coefficient lnD are estimated from Fig. 4. In
the numerical fitting we used the least squares fit, discard
the data points in the very early stage of time evolutiont
,100), which is influenced by the initial phase of the pe
turbation.

Figure 5 shows the numerically estimated results ofa and
ln D. We find that the exponenta gradually increases an
approaches a constant value slightly less than 1. As wil
shown below, the limiting valuea approaches 1.0 in the
limit of M→` if the perturbation strengthe is taken to be
some finite value. Thus we may say that the subdiffus
tends to approach the normal diffusion, as the numbe
frequenciesM increases. We have confirmed that the sa
behavior is also observed for other sets of values of the
quencies.

FIG. 5. Number of frequency dependence of~a! the power index
a, and~b! coefficientD, estimated by the data in Fig. 4.
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Note that it is difficult to judge exactly whether such
subdiffusion is endless or a transient phenomenon by
merical results even if we performed the larger scale sim
lation. As we mentioned in the Introduction, the number
frequency components can be regarded as the number o
ear oscillators coupled to the 1DDS@28,9#. Accordingly, this
result, that the localization can be destroyed by perturba
with two frequencies, is consistent with the appearance o
irreversible phenomenon reported in a previous paper@9#.

It will be instructive to compare the above diffusion pr
cess with the stochastically perturbed diffusion proce
where a stochastic perturbation is applied instead of the p
chromatic perturbations.~We hereafter call the stochastical
perturbed model theS model.! The MSD for the stochastic
perturbation is shown in Fig. 4~c! as a reference. In the limi
of M→` the diffusion of the polychromatically perturbe
system approaches the one driven by the stochastic pertu
tion provided that the perturbation strengthse are the same.
Such a feature is comprehensible considering that the p
chromatic perturbation can be identified with a white no
~or a colored noise if the frequencies are distributed ove
finite bandwidth! in the limit of M→`.

We conclude that even though the perturbation strenge
is not very strong, the Anderson localization seems to
destroyed if the number of colors is more than 1. Even if
localization is not destroyed, the localization length of t
asymptotic wave packet is extremely enhanced, to a le
undecidable by numerical simulations. The dynamical evo
tion in the delocalized regime occurs according to a we
defined subdiffusion process, and no sudden transition
normal diffusion can be observed as the number of color
increased. Normal diffusion seems to be realized only in
large limit of the incommensurate color numberM.

Before closing this subsection we remark on the ensem
average over the different samples. In the subdiffusion
gime each sample is accompanied by a considerable num
of fluctuations, and the time dependence of various quan
mechanical averages of a single sample does not give a
nificant result. We usually take the ensemble average o
20–50 different samples. Such a fluctuation, however,
creases in the normal-diffusion limit. This fact implies th
the large fluctuation is strongly related to the nature of s
diffusion itself. The interesting statistical property of th
sample-to-sample fluctuation in width of wave packet h
been investigated for band random matrix models@37#. In
order to make clear the relation with our model, we have
do numerical simulation for a large number of samples. T
relation between the anomalous fluctuation and the subd
sion will be investigated elsewhere@38#.

C. Perturbation strength dependence

In this subsection, we investigate in detail how the tra
sition from the subdiffusion to the normal diffusion take
place as the perturbation strength is varied continuou
Since we are interested mainly in thee dependence, the colo
number is fixed to some representative values, i.e.,M
52, 5, and 10.

Figures 6–8 show the time dependence of the MSD
its logarithmic plots at several perturbation strengths. Fr
the logarithmic plots shown in Figs. 6–8 we can observe t
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even though the perturbation contains many frequency c
ponents, the diffusion process obeys the subdiffusion la
when the perturbation strength is small enough. This f
implies that, however large the number of frequencies m
be, the polychromatic perturbation cannot also yield norm
diffusion provided that the perturbation strength is wea
than a characteristic strength determined by the numbe
colors.~It will get smaller as the numberM increases.! This
is an essential feature different from the stochastic pertu
tion which induces a normal diffusion however small t
strengthe may be.

In Fig. 9 thee dependence of the numerically estimat
exponenta of subdiffusion for the three casesM52, 5, and
10 is shown. In all cases the exponenta increases steeply a
e increases, and eventually approaches unity, which me
the onset of normal diffusion. As the numberM increases,
the approach toa51.0 with an increase ine becomes faster
We stress again that the transition from subdiffusion to n
mal diffusion is continuous, and there seems to be no dra
change.

A more basic question is whether there is any transit
from the localized state to the delocalized state in the
tremely weake regime. This is a very hard question which
not easy to answer from the results of numerical investi
tions. The fact we could confirm is that for all the data poin
displayed in Figs. 6–8 the subdiffusion does not saturate
to the numerically computable time scale~up to t<104).

Next we investigate how the spreading velocity of t
wave packet depends upon the perturbation strength. S

FIG. 6. ~a! Time dependence of MSD inL model for the per-
turbation (M52) at some perturbation strength and~b! its logarith-
mic plots.
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our system exhibits subdiffusion, it is not possible to intr
duce some constant which quantitatively characterizes
spreading velocity throughout the diffusion process. The
efficient D introduced by Eq.~14! coincides with the diffu-
sion constant in the normal-diffusion regime, but it does n
directly characterize the spreading velocity in the subdif
sion regime. We, therefore, use the local diffusion ra
D(T,DT), which is decided by the tangent of the lea
squares fit to the data for the finite-time intervalT<t<T
1DT. In Figs. 10~a! and 10~b! we depict thee dependence
of the local diffusion ratesD(T,DT) measured atT5100,
300, 500, and 700 for the intervalDT5200. A remarkable
fact is that they first increase rapidly and reach a maxim
value and finally decrease slowly. The value ofe which
makes the local diffusion rateD(T,DT) maximum almost
agrees with the characteristic value at which the indexa
begins to saturate to 1.0~see Figs. 6–8!. As has been men
tioned in Sec. III A, similar characteristics are observed
the monochromatic perturbation system in thee dependence
of the enhanced localization length.

To have some idea of such a characteristic behavior,
compare the above results with the diffusion rate of
1DDS perturbed by the stochastic perturbation@see Figs.
11~a! and 11~b!#. Figure 12 shows thee dependence of the
diffusion rate numerically estimated from MSD. The glob
feature of thee dependence is very similar to the resu
shown in Fig. 10~a!. In particular, the values ofe* ('1.0)
which make the diffusion rates maximum coincide and
maximum values of the local diffusion rates are also close

FIG. 7. ~a! Time dependence of MSD inL model for the per-
turbation (M55) at some perturbation strength and~b! its logarith-
mic plots.
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each other. However, the detailed behaviors exhibit sign
cant differences. In the very small regime ofe, the diffusion
rate behaves asD(e)}e2 in the case of stochastic perturb
tion, while it seems to grow linearly rather than ase2 in
cases of polychromatic perturbation. Further, in the largee
regime,D(e) seems to decay}e22 in the stochastic case
but D(e) decays more slowly in the polychromatic case. T
agreement and the disagreement between the two cases
vides useful information for understanding the underlyi
physical mechanism of the delocalization phenomenon
1DDS driven by the polychromatic perturbations, which w
plan to discuss in the future@38#.

FIG. 8. ~a! Time dependence of MSD inL model for the per-
turbation (M510) at some perturbation strength and~b! its loga-
rithmic plots.

FIG. 9. Perturbation strength dependence of power indexa in
some cases,M52,5,10.
-

e
ro-

f

FIG. 10. Perturbation strength dependence of the local diffus
rate for some intervals~100–300, 300–500, and so on! at M55.

FIG. 11. ~a! Time dependence of MSD for stochastic perturb
tion at some perturbation strength.~b! Expansion of the vicinity of
an origin in ~a!.
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The observation of enviroment induced decoherence
dynamically localized states in a quantum kicked ro
~QKR! is interesting@39–41#. Moreover, note that some pro
peries of spectra and eigenstates of a band random m
~BRM! are expected to have statistical properties similar
those of the QKR@42,43#. It has been reported that in th
QKR and BRM the strength of noise exceeds some crit
value, then it destroys the coherent effect of quantum lo
ization and pure classical diffusion is recovered@37,41#.
Quantum diffusion with small diffusion rate can be observ
for a smaller noise strength than the critical strength.

On the other hand, although there are interesting preli
nary results that subdiffusive behavior for the spread o
wave packet has been found in coupled QKRs with we
coupling strength@23,26#, more detailed numerical investiga
tions with adequate accuracy have to be carried out for
high-dimensional QKR and periodically perturbed QK
without any external stochasticity.

D. Scaling properties

The MSD, which obeys the subdiffusion law, approach
rapidly but continuously the normal-diffusion law asM
and/ore is increased. In the normal-diffusion regime, we c
expect that the distribution function

P~n,t ![^uC~n,t !u2&V ~15!

evolves in the Gaussian form

P~n,t !}exp$2~n2n0!2/@2j~ t !2#%. ~16!

On the other hand, the localization occurs at least in the c
of M<1, in which the wave packet decays in a linea
exponential form@3#

P~n,t !}exp$2un2n0u/j~ t !%. ~17!

We are interested in how the time-evolution process of
distribution function changes as the localization proc

FIG. 12. The perturbation strength dependence of diffusion
estimated by the MSD data in Fig. 11.~b! The expansion of the
vicinity of an origin in ~a!.
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changes into normal diffusion with increases inM ande. In
particular, we will show that the time-evolution process
the distribution function obeys a remarkable scaling law
the subdiffusion regime.

First we show typical examples ofP(n,t) in the localiza-
tion regime and in the subdiffusion regime, in comparis
with P(n,t) of theSmodel which obeys the standard Gaus
ian process. Figures 13 and 14 show some snapshot
P(n,t) for the S model, and for theL model withM50, 2,
and 5. We use 50 samples of spatial disorder to average
distribution function.

Some analytical results have been obtained for stea
state distribution in a continuous 1D disordered model w
white noise potential@44#. The shape of the wave packet
the unperturbed case is consisent with the analytical fo
Moreover, it has been shown that the analytical express
reproduces the asymptotic average of the wave packet
some quasi-1DDSs well@37#.

In theSmodel the distribution function spreads exactly
the shape of the Gaussian distribution function, and suc
behavior, of course, occurs regardless of the perturba
strength. In contrast with this, the distribution function b
comes localized and approaches the shape of the lin
exponential decay@Eq. ~17!# in the case ofM50. On the
other hand, in both casesM52 and 5, which exhibit the
subdiffusion, the wave function spreads, but they seem
have some interpolated shape between Eq.~16! and Eq.~17!.
Moreover, a remarkable peak remains in the vicinity of t
center of the distribution even in the later stage of time e
lution ~at least up toT;1900). The presence of such a pe
seems to be strongly correlated with the subdiffusion~and
the localization as well!. In fact, as normal diffusion is
achieved with increase ine and/or M, such a peak disap
pears.

Next, we seek the mathematical rule underlying the tim
evolution process of theP(n,t). In both extreme cases o
localization and of normal diffusion, it is evident that th
distribution function obeys the scaling rule

te FIG. 13. Some snapshots of the ensemble averaged proba
distribution function of S model at the perturbation strengthe
50.5. The ensemble size is 50.
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P~n,t2!5
j~ t1!

j~ t2!
PS j~ t1!

j~ t2!
n,t1D ~18!

at two arbitrary timest1 and t2 in the time domain in which
the stationary evolution is achieved. For the sake of simp

FIG. 14. Some snapshots of the ensemble averaged proba
distribution function ofL model for some different numbers of fre
quency~a! M50, ~b! M52, ~c! M55. The perturbation strength i
taken ate50.5. The ensemble size is 50.
-

ity, we henceforth redefine the center of the distributionn
5n0 as the origin of the distribution function. We may e
pect that such a scaling rule can also be extended to
subdiffusion regime. We first examine whether our expec
tion is valid. To do this examination, we suppose the dis
bution P(n,t* ) at time t* (5700) is a standard distribution
If the scaling rule~18! is correct, we can construct the dis
tribution function att* from the one at an arbitraryt by
setting t25t* and t15t in Eq. ~18!. The only information
necessary to carry out the procedure is theP(n,t) and MSDs
j(t)2 and j(t* )2. If such distribution functions,Pt(n,t* )
[j(t* )/j(t)P„j(t* )/j(t)n,t…, made up fromP(n,t) at dif-
ferent t ’s, coincide with each other, we can prove the pre
ence of the scaling property. In Figs. 15~a!–15~c! we show
the semilog plots of thePt(n,t* )’s obtained at severalt ’s in
the cases ofM52, 3, 5.~The perturbation strengthe is taken
at a fixed value of 0.5 for all data.! All the Pt(n,t* )’s coin-
cide with each other very well, and thus we have to conclu
that P(n,t) is represented by a single scaled form,

lity

FIG. 15. Semilog plots of the scaled wave functionsPt(n,t* )
for various snapshots inL model for ~a! M52, ~b! M53, ~c! M
55. We used a snapshot att* 5700 as a standard distribution
Smoothened data are used to observe the coincidence clearly.
these distribution functions are symmetric with respect to the ce
of the distribution, the left parts are omitted.
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FIG. 16. ~a! Some snapshots of the ensemble averaged probability distribution functionP(n,t) and ~b! the scaled functionPt(n,t*
5700) of L model forM53, e52.0. The ensemble size is 50.
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P~n,t !5j~ t !21PscS n

j~ t ! D . ~19!

In Fig. 15 smoothed data are used to observe the coincid
clearly. The data att5300 are still in the early stage and thu
slightly deviate from the scaled form achieved by the data
the later stages. The time evolution of distribution functio
and the scaled functions at different choices of the par
eters are also shown in Figs. 16 and 17, where the orig
data which are not smoothed are displayed. These data
support the above conclusion.

Finally we investigate in more detail the functional for
of Psc(x). Let g(x) be the exponent function defined by

Psc~x!5e2g~x!. ~20!
ce

n
s
-

al
lso

Observing that in the Gaussian limitg(x)}x21const,
whereasg(x)}uxu1const in the localization limit, we may
guess that the functiong(x) shows the power-law depen
dence except for a constant part

g~x!2g0}uxub, ~21!

which interpolates the two limiting situations, where the e
ponentb will take a fractional value between 1 and 2 andg0
is a certain positive constant. However, as stated above
scaled distribution function has a sharp peak at the cente
the distribution, and the scaled distribution function will b
fitted to the power law~20! except for the singular part ver
close to the central peak. The unknown parametersg0 andb
are decided so thatQ(x,g0)[ ln $2 ln Psc(x)1g0% may fit
FIG. 17. ~a! Some snapshots of the ensemble averaged probability distribution functionP(n,t) and ~b! the scaled functionPt(n,t*
5700) of L model forM510, e50.1. The ensemble size is 50.
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best to the linear function of lnuxu, i.e.,b ln uxu1const except
for the range close to the origin. For smallerg0 , theQ(x,g0)
is concave as a function of lnuxu, whereas it is convex for
largerg0 , and for an optimalg0 theQ(x,g0) becomes nicely
straight as a function of lnuxu except for the range close to th
origin.

In Fig. 18 we show the best linear fits of the scaled d
tribution functions in the cases ofM52, 3, 10, andS model
(e50.5). The fitting is very nice in the significant region
x, which strongly indicates the validity of the power-law d
pendence. The precise choice of the exponentsb is not very
easy, and it is accompanied by some amount of error, b
is evident that as the numberM increases (e is fixed! the
exponent increases gradually from 1 to the upper bound
the Gaussian limitM→`. Similar behavior occurs whene is
increased with the number of colors being fixed (M>2). In
conclusion, the scaled form of the distribution function
given by the ‘‘stretched’’ Gaussian distribution

Psc~x!}exp$2const3uxub%, ~22!

P~n,t !; exp$2const3~ unu/ta/2!b%, ~23!

except for the range close tox;0. Thus the distribution
function is specified by the two exponents, i.e.,a character-
izing the temporal growth of the wave packet, andb char-
acterizing the spatial decay of the wave function. Our sca
distribution function is a unified form which contains the tw
extreme limits, i.e., the localization (a50,b51) and the
normal diffusion (a51,b52) as special cases, and in ge
eral interpolates them.

A question arising here is about the relation between
two exponentsa andb. If the exponenta51 then we ex-
pect that the diffusion process is normal diffusion and so
spatial exponentb52, whereas ifa50 we expect that the
system is localized and thusb51. Therefore, the two expo
nents are not independent and are strongly correlated at
in the normal-diffusion limit and in the localization limit
Such a correlation between the two exponents may also e

FIG. 18. Best linear fits of the scaled distribution function in t
cases of theL model for M52, 3, 5, andS model. We used the
valueg052.4 as the best selection for all cases. We used a snap
at t* 5700 as a standard distribution.
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in the intermediate regime where the anomalous diffusion
observed. Figure 19 shows the plot of (a,b) obtained for
various combinations of the two independent parametere
andM. The precise determination ofb is more difficult than
a, and the former is accompanied by some amount of er
but it is evident that the two exponents are strongly cor
lated in the subdiffusion regime. Because of the numer
errors, it is not convincing that the plots of the two expone
are on a single unique curve. Whether the two exponents
independent or whether one of them is decided by the o
is a quite interesting question worth being examined b
more extensive numerical simulation. As has already b
mentioned, the data of MSD and of the shape of the pr
ability distribution function are accompanied by a lar
amount of fluctuation in the subdiffusion regime, and w
have to take the ensemble average over a larger numbe
samples in order to eliminate the numerical errors of
exponents. Moreover, the large fluctuation itself is a ve
interesting phenomenon inherent in the subdiffusion, wh
we plan to analyze in more detail in the future.

IV. OTHER MODELS

In the present section we investigate the characteristic
diffusion in the one-dimensional tightly binding mode
driven by the oscillatory perturbation in ways different fro
theL model, namely, the AC model and theB model, which
have been introduced in Sec. II A.

A. AC model

The characteristics of diffusion of the AC model are ve
similar to those of theL model. We discuss some detail
Figures 20~a!–20~c! show the MSD at the perturbatio
strengthe50.01. In the monochromatically perturbed ca
the diffusive behavior saturates at a certain level, and
conclude that the localization is not still destroyed by t
monochromatic perturbation. However, the localizati
length is considerably enhanced by the monochromatic
turbation.

Next we consider polychromatically perturbed cases.
show in Figs. 20~d! and 20~e! the logarithmic plots of MSD
vs time. All the data align along straight lines with tangen

hot

FIG. 19. Plot of (a,b) obtained at various combinations ofe
andM. Note that (a,b)5(0,1) is the localization limit and~1,2! is
the normal-diffusion limit.
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FIG. 20. ~a!, ~b!, ~c! Time dependence of the MSD in AC model driven by oscillatory perturbation for polychromatic color (M51 –13!
at some perturbation strength,e50.02, and~d!, ~e! its logarithmic plots.
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less than 1, and so we may conclude that the MSD obeys
subdiffusion law. Figure 21 is theM dependence of the
power indexa(M ) and coefficient lnD(M) in Eq. ~14!, es-
timated from the data in Fig. 20. The results suggest
normal diffusion is realized in the limit ofM→`, as has
been recognized in theL model. In conclusion, all the fea
tures of the AC model are quite similar to theL model.

B. B model

Without the oscillatory perturbation, the dynamics of t
B model exhibits a ballistic motion instead of the localizati
and thus makes a sharp contrast to theL model. The major
interest here is how such a ballistic motion is suppressed
changes into other kinds of motion by introducing the d
namically oscillating random scatterers.

In the numerical simulation of theB model the perturba-
tion strengthe is made considerably larger than in theL
model because of some technical reasons: at small value
e the wave packet spreads very quickly to reach the bou
ary of the system because of the ballistic nature of the
perturbed motion, and it is very difficult to observe the s
tionary stage of the motion with a numerical simulation o
finitely sized model. In practice we fixed the perturbati
he

at

nd
-

of
d-
n-
-

strength to the relatively large valuee52.0 and change the
number of colorsM.

By introducing the oscillatory perturbation, we observ
that the ballistic motion changes into either localized or d
fusive motion, but there are some qualitatively noticea
differences from theL model. The diffusion rate is in genera
much larger than that of theL model at the samee andM.
Figure 22 shows the logarithmic plots of MSD as a functi
of time at M51,2, . . .,13. At M51, the ballistic motion
seems to be most drastically suppressed: the logarith
plots of the MSD deviate significantly from a straight lin
which strongly indicates a tendency toward the localizati
We conjecture that localization occurs in the present ca
but the localization length is much larger than the case of
L model and AC model at the same values ofM ande.

At M larger than 1 the logarithmic plots of MSD ar
obviously on the straight line of tangent 1.0, and the sub
fusion regime, which is a remarkable characteristic in theL
and the AC models, cannot be observed. The diffusion rat
much larger than that of theL model at the same values ofM
ande, but it decreases with an increase ine. In the limit of
e→` the L model approaches theB model, and so the dif-
fusion rates of the two models should coincide asympt
cally in this limit.
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V. SUMMARIES AND DISCUSSIONS

We have numerically investigated the time-evolution p
cess of a one-dimensional disordered quantum system dr
by an oscillatory perturbation which consists of different fr
quency components. Any disordered quantum system is
isolated from the influences of other degrees of freedom,
such an effect may drastically change the nature of the
ordered system. By adding the oscillatory perturbation
intend to simulate the influences of other dynamical degr
of freedom. We are particularly interested in how the num
of degrees of freedom of the perturbation changes the lo
ization effect which is the generic nature of 1DDS. In o
model the number of degrees of freedom can easily be c
trolled by the numberM of the different frequency compo
nents.

The time evolution of a wave packet is investigated
systematically changingM and the perturbation strengthe.
The higher-order FFT–symplectic-integrator scheme w
used in the numerical computation. The localization is v
sensitive to the oscillatory perturbation, and under some g
eral conditions the localization length is much enhanced
level which cannot be decided by numerical computatio
The wave packet diffuses far beyond the localization len
of the original 1DDS, and it has been discovered that
diffusion process obeys a unified scaling law characteri
by a few characteristic exponents. The results we obtaine
the present investigation are summarized as follows.

~1! In the case of the monochromatic perturbation (M
51), a diffusion occurs in an early stage of time evolutio
but it is suppressed on a longer-time scale, and the m

FIG. 21. Number of frequency dependence of~a! the power
index a, and~b! coefficientD, estimated from the data in Fig. 20
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square displacementj(t)2 is eventually bounded by a certai
finite level. ~See Fig. 3.! Thus the localization is not de
stroyed by the monochromatic perturbation. However,
localization length is enhanced more than the localizat
length of the unperturbed 1DDS.

~2! In the case of the numberM>2, diffusive behavior is
maintained within the time scale accessible by the numer
simulation.~See Fig. 4.! The diffusion process is not, how
ever, in general the normal diffusionj(t)2}t but the subdif-
fusion in which the MSD increases asj(t)2}ta. ~See Fig. 4.!
The characteristic exponenta is between 0 and 1, and as th
numberM and/or the perturbation strengthe increases, the
exponenta approaches 1.~See Figs. 5 and 10.!

~3! The subdiffusive behavior of MSD implies the exi
tence of a scaling property in the time-evolution proce
Indeed, the distribution functionP(n,t) is scaled byj(t),
which is decided by the exponenta. ~See Figs. 15–17.! Fur-
ther, the scaling function is specified by a new exponenb
characterizing the spatial decay of the distribution.~See Fig.
18.! Consequently, the spatiotemporal behavior of t
distribution function is characterized by the spat
exponentb and the temporal exponenta in the form of

FIG. 22. Time dependence of the MSD inB model driven by
oscillatory perturbation for polychromatic color (M51 –13! at the
perturbation strength,e52.0.
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P(n,t); exp$2const(unu/ta/2)b% ~see Fig. 14!, which is a
unified scaling distribution containing the two cases, i.e.,
calization (a50,b51) and normal diffusion (a51,b52)
as extreme limits.~See Fig. 19.! The results summarize
above have been obtained for theL model. We also exam
ined other kinds of models of the dynamically driven 1DD

~4! The diffusion properties of the AC model are ve
similar to theL model, but the dynamical characteristics
the B model are quantitatively different from theL model.
The most remarkable feature is that the subdiffusion reg
is not observed, and normal diffusion occurs forM>2. ~See
Figs. 20 and 22.! The fact that the scaling behavior connec
the two extreme limits, i.e., localization and normal diff
sion, continuously seems to imply that the two seemin
contradictory notions of localization and normal diffusio
may be understood in a unified manner by including
oscillatory perturbations.

With the present status of our numerical computat
power, it is not very easy to judge whether the subdiffus
is endless or not. However, it is certain that the saturation
subdiffusion could not be observed within a very long-tim
scale accessible by the numerical simulation. Even tho
the localization length is finite, it increases very quickly wi
increase inM and/or e, and we can practically regard th
localization length of the asymptotic wave packet as infin
It will be appropriate to call such a phenomenondynamically
induced delocalization,in short, dynamical delocalization.
The essential unclarified issue is the dynamical mechan
resulting in the scaling behavior in the subdiffusive regim

A very important fact is that the localization easily tur
into a nice diffusive motion if it is driven by a perturbatio
containing only a small number of frequencies. This fa
implies that the localized state of 1DDS has the poten
ep

,

h’’
k

ad
e

-

.

e

y

e

n
n
f

h

.

m
.

t
l

ability to yield mixing properties which finally lead to a dis
sipative behavior. This fact provides a hint to elucidate
relationship between the localization and the resistivity~or
dissipation!, which are both the results of the scattering
irregularly distributed impurities@9#. In short, the localized
state is very close to a mixing state which has the ability
losing the initial memory. Such a potential for the mixing
our system is very similar to the characteristic of a quant
chaos system@20,28#, although, as discussed in the Introdu
tion, some basic differences may exist between the two s
tems.

It is worth to noting that the scaled evolution of the di
tribution function~23! is also reported in a classical diffusio
system@45–47#. In particular, it is very interesting that th
same form of the non-Gaussian probability distribution h
been obtained for the classical Brownian particles with lo
memory effect on the fractal medium@46,47#. In these cases
the exponents corresponding toa and b are directly con-
nected to the exponents of the spatial correlation of scatte
and of the temporal correlation of the random forces, wh
are both explicitly assumed in the model system. In our ca
no such explicit assumption had been done in the mo
system, and the scaling behavior is self-generated in the
tem.
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