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Dynamical delocalization in one-dimensional disordered systems with oscillatory perturbation
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The effect of dynamical perturbation on the quantum localization phenomenon in a one-dimensional disor-
dered quantum systedDDS) is investigated systematically by a numerical method. The dynamical pertur-
bation is modeled by an oscillatory driving force containigindependentmutually incommensuratere-
guency components. FiM =2 a diffusive behavior emerges and in the presence of the finite localization
length of the asymptotic wave packet can no longer be detected numerically. The diffusive motion obeys a
subdiffusion law characterized by the exponenas £(t)%«t®, where&(t)? is the mean square displacement
of the wave packet at time With an increase i and/or the perturbation strength, the exponemngapidly
approaches 1, which corresponds to normal diffusion. Moreover, the spaceximedépendence of the
distribution functionP(x,t) is reduced to a scaled form decided hyand another exponer@ such that
P(x,t)~exp[—const><(|x|/t“’2)ﬁ}, which contains the two extreme limits, i.e., the localization limdt (
=0, B=1) and the normal-diffusion limit¢=1, 8=2) in a unified manner. Some 1DDSs driven by the
oscillatory perturbation in different ways are examined and compared.
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[. INTRODUCTION cally changed if the localized system is coupled with differ-
ent dynamical degrees of freedd®,9]. This is the subject
The localization phenomena in one-dimensional disorwe will discuss in the present paper.

dered quantum systeni$DDS) have been extensively stud-  An extreme case is that the 1DDS is coupled with a heat
ied for several decad¢$,2]. It is well known that almost all reservoir composed of an infinite number of degrees of free-
the eigenstates are localized under the presence of any didem. In this case the influence from the heat reservoir is
order [3]. The detailed features of localization, of course,modeled by stochastic forces applied to each of the lattice
depend upon the nature of a random potentials, and the quasites[10,11]. Such a perturbation will destroy the quantum
tum diffusion of a wave packet in the 1DDS is in generalcoherence which is the origin of the Anderson localization,
suppressed within a finite length by the interference effectand the wave packet diffuses beyond the intrinsic localiza-
The localization is regarded as a result of the coherent backion length. In most theoretical treatments the stochastic
scattering by irregularly distributed scatteré?3. There are forces are modeled by Gaussian noise with a very short spa-
generally two length scales in the disordered quantum sysiotemporal correlatiof12,13. In such a class of stochastic
tems; one is the mean free path and the other is the localiz#attice model a classical normal diffusion in which the MSD
tion length[4]. The time dependence of the mean squaregrows linearly with time occurs, as is naturally expected
displacementMSD) of an initially localized wave packet [12]. However, the diffusion coefficient is decided only by
grows ast? within the mean free path. Such a growth is the parameters characterizing the statistical properties of the
suppressed as the packet length reaches the second scale, stchastic force and does not explicitly depend upon the
the localization lengtfi5]. Between the two scales, it is sup- length scales of Anderson localization. This fact implies that
posed that an intermediate regime exists in which the MSDRhe generic dynamical structure inherent in the localization is
grows according to a power lat¥ (0<a=<1). However, entirely destroyed by the stochastic perturbation. In such
the existence of such a diffusive regime has not been estalslass of models, the electronic stochasticization resulting in
lished in the ordinary 1DDS, since these two lengths araliffusion is “forced” by the externally introduced stochas-
almost of the same scdl#&,2]. Even in disordered systems of ticity.
more than one dimension, for which the localization length A more interesting scenario of the electronic stochastici-
may be much enhanced and may even become infinite, theation is the possibility that the stochasticization mechanism
existence of such an intermediate regime is not very cleaiis spontaneously organized the systenwithout any help of
although some indications have been obtaifed]. Regard- the external stochastic sourcA possibly simplest situation
less, a finite localization length means that the memory oris modeled by the 1DDS perturbed by a classical oscillating
the initial state is maintained in the 1DDS even for a long-force with several frequency components. It is known that
time scale, and there are no stochasticization processasich a class of system is equivalent to an autonomous sys-
which result in statistical behavior. In short, the 1DDS is nottem, that is, the 1DDS coupled with linear oscillators with
ergodic, and therefore exhibits no mixing property, i.e., nothe same set of natural frequencjéd], and the linear oscil-
decay of correlation. Such features may be, however, drastiator can be identified with a highly excited quantum har-
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monic oscillator[9]. Thus the proposed model may be (more precisely, decided by and thus classically negligible
looked upon as an isolated autonomous system composed obupling with a small number of linear oscillatdr28].
1DDS and a finite number of linear oscillators. We may thus expect that a similar stochasticization
A practical example of an oscillatory perturbation is the mechanism is “self-organized” in the Anderson localized
ac electric field. Mott and Davies discussed the conductivitylDDS when it is coupled with some other degrees of free-
of ac-driven disordered systems by using the Kubo-dom. On the other hand, it should be noted that the 1DDS is
Greenwood formula[15,16. Later, Wilkinson also dealt essentially different from the quantum chaos systems in the
with the response of an electron to low frequency perturbafollowing sense: the latter have their classical counterparts
tion from the viewpoint of the nonadiabatic transition, which exhibiting a well-defined normal diffusion, or more gener-
is different from Mott's theonf17]. However, they are both ally, the mixing properties in the limit ofi—0, but the
based upon the perturbation theories, and in applying théormer in general do not have such classical counterparts.
perturbation theories the stochasticization of an electronidhus the stochastic behaviors which might be realized in the
state has implicitly been supposed. Indeed, the results of pedynamically perturbed 1DDS will be different from those
turbation theories, which are based upon the short-time exabserved in the quantum chaos systems.
pansion, are significant only if any stochasticization mecha- In the present paper we numerically investigate the time
nisms destroy the dynamical coherence within the time scalevolution of the wave packet in 1DDS under the presence of
under consideration, but the origin of the stochasticization i®scillatory perturbations and investigate how the effect of the
not explained within the framework of the perturbation theo-perturbation changes the fundamental nature of Anderson lo-
ries. On the other hand, Willkinson concludes that the stocalization. It is shown that the perturbation drastically in-
chasticization in disordered quantum system is inhibiteccreases the localization length up to a level undecidable by
even if it is perturbed by an ac field, because of the localizanumerical calculations and a diffusion behavior is observed
tion effect in the adiabatic Floquet basis $&8]. The dy- over a wide range of the control parameters. The main result
namical effects of the coherent oscillatory perturbations oris that the diffusion is not a normal diffusion but an anoma-
the disordered electronic system are still very unclear. lous diffusion, and moreover the spatiotemporal behavior of
On the other hand, the oscillatory perturbation may workthe probability distribution function is reduced to a simple
for the electron as if there were a lattice vibration rather tharscaling form. The outline of the present paper is as follows.
a coherent ac field. Whether the oscillatory perturbation acts In Sec. Il the model system investigated in the present
as if there is a coherent ac electric field or as if there is arpaper is introduced. The model system is a one-dimensional
incoherent lattice vibration will depend on the number oftightly binding system perturbed by an oscillatory force com-
independent frequency components. In the present paper vposed of incommensurate frequency components of the basic
systematically investigate the effect of oscillatory perturba-model which are also discussed, and the method of numeri-
tions on the 1DDS. In particular, we are interested in how thecal simulation is explained briefly.
number of frequency components, i.e., the number of de- In the next section, we investigate the wave packet dy-
grees of freedom, composing the perturbation influences theamics exhibited by the basic model system. First, we show
dynamical properties of the system. In our preliminary re-that the localization length is enhanced but is finite in the
ports, we have shown that the 1DDS is very sensitive to @ase of monochromatic perturbation. However, if the number
coupling with systems with other degrees of freedom andf frequencies is more than one, the localization length is
that a periodically perturbed 1DDS exhibits a diffusive be-drastically enhanced to a level undetectable by the numerical
havior over an unexpectedly long-time scf8e9]. Decoher- method. It is shown that the wave packet spreads without
ence in quantum systems induced by the coupling with othelimit according to an anomalous diffusion process character-
systems with a small number of degrees of freedom is aized by a certain exponent. How the characteristics of such
important subject in quantum phenomgri®-21. In par- an anomalous diffusion depend on control parameters such
ticular, there have been some examples of classically chaotas the perturbation strength and the number of incommensu-
guantum systemgso-called quantum chaos systems rate frequencies is explored in detail. The latter half of Sec.
which stochasticization is self-organized and the localizadll is devoted to the spatiotemporal characterization of the
tionlike effect can be destroyed spontaneously due to therobability distribution function which is responsible for the
coupling with a system with other degrees of freedom. Fomnomalous diffusion. Analyzing the results of extensive nu-
example, classical chaotic diffusion, which is suppressed bynerical simulation it is found that the probability distribution
an Anderson localizationlike mechanism in the correspondfunction reduces to a scaling form, which is characterized by
ing quantum systemg22], can be restored by a very weak two exponents: one is the exponent of the anomalous diffu-
coupling with systems with other degrees of freed@8—  sion, and the other is an exponent describing the spatial de-
27], which implies that the localization effect is very weak cay of the distribution function. The scaling function has a
against a coupling with systems with other degrees of free“unified form” in the sense that it contains the two cases,
dom. In the case of kicked rotators, the coupling with oscil-i.e., the Anderson localization and the normal diffusion as
latory perturbation is roughly equivalent to an increase in thehe two extreme limits.
spatial dimension and transition to the delocalization is ob- Finally, in Sec. IV, some other models different from the
served[24,25,34,3% basic model in the scheme of the coupling with the oscilla-
More generally, whether the classical counterpart of d@ory perturbation are examined, and the diffusion properties
guantum chaos system exhibits diffusion is not essential: angre investigated in comparison with the basic model investi-
guantum chaos system may restore the mixing propertiegated in Sec. Ill.
through a phase-transition-like behavior by a very weak The last section is devoted to summaries and discussions.
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Il. MODELS AND METHOD OF SIMULATION Vo(n)=0, (5)

A. Models . .
the system becomes the free electron model if the oscillatory

~The model we consider in the present paper is a oneperturbation is switched off. By switching ovi;(nt) our
dimensional tightly binding electronic system perturbed bymodel describes a free electron scattered by quasiperiodi-
periodically oscillating forces. The Hamiltonian is given by cally oscillating irregular potentials. This situation is also

N interesting as it is connected with the problem of a ballistic
_ electron scattered by dynamical impurities. We refer to this
H(t)= [ Ve(n)+V(n,t) KN L
(®) n§=:1| MVo(M+Va(n.H)n| model as the ballistic modeB(mode).
N In addition to these two cases, we can consider a particu-
E K 1 lar case where the perturbation amplitude does not vary ir-
+n¢m [mK(n,m){m, @) regularly from site to site but depends systematically on the
sites as
€ M
Vi(n,t)=V;(n)—2>, codwt). 2 Vi(n)=n. (6)
1(n,) =V )NJ; Lojt) )

We call such a model the AC model, because the periodic

The basis sef|n)} is an orthonormalized one representing perturbation models the effect of an ac electric field. With
lattice sites, and/y(n) andVq(n) are the on-site energies of this model we can study how localization is influenced by a
an electron at the site, Vy(n) varies at random in the polychromatic ac field. There have been some studies on the
range[ —W,W] from site to site, and the transfer energy diffusion of the electrons under the influence of the ac field,
vanishes unless sitem and m are adjacent[K(n,m) but the time-dependent perturbation thefit$] or the adia-
=6, m=1]. The strength of the site energy is fixed mainly atbatic perturbation theory have been used in these treatments
W=0.9 throughout the present paper, and weisetl with-  [17]. Such theories implicitly assume the destruction of dy-
out loss of generality. We set the system size and ensembi@gmical coherence in the system and cannot deal with the
size 1024 and 20-50, respectively, throughout the preseffitlly dynamical evolution process. Very recently, Dietzal.
paper. have investigated the time-dependent property of an electron

The oscillatory perturbation is polychromatic and isin a semiconductor superlattice with disorder driven by an ac
composed oM different frequency componengsolorg, and  electric field, as a realistic modg86]. Whether an intrinsic
the frequencie$w;} are chosen to be mutually incommensu- diffusion occurs in the 1DDS with the ac field is still an open

; ; _ _ 2 problem.

rate, and are typically given ae; =1, v;=1+ V7. o5 We numerically investigate the AC model in Sec. IV in

~1+/%,..., and so on. comparison with thé&. model.

As is shown by Eq(2), we have supposed that all the
amplitudes of the periodic components have the same value,
and e characterizes the strength of the oscillatory perturba-
tion. In fact, the long-time average of the squared perturba- We numerically integrate the following time-dependent

B. Method of simulation

tion amplitude is given by Schralinger equation under periodic boundary conditions:
€ 0w (n)
<V1(n,t)2>t/V1(n)2=§, (3) —i— =Y+ D+ ¥(-1)-V(nH)¥(n). (@)

where( ), indicates the long-time average. We are interested he Planck constant is chosen to be 1 without loss of

in how the periodic perturbations influence the quantum nagenerality. We explain the method of integration we have

ture of the 1DDS as the number of coldvsand/or the per- used in this paper briefly. By using the continuum coordinate

turbation strengtte are changed. x and the momentum operat@r=—id/ox in Eq. (7) the
We are most interested in how the oscillatory perturbatiortHamiltonian is rewritten as

V,(n,t) influences the localization phenomena due to the

randomness of the on-site potentig)(n), which we call the H(t)=e”*+e 7>t v(x,t)=T+V(1), (8)

perturbed localization problemTo investigate this kind of

problem, we may choose the simple form of the perturbationwhere

Vi(n)=Vo(n). (4) T=2cogp/t), V=V(xt). ©)

We call this model the localization moddl (node) because The wave function¥ (x,t) at the sitex and the timet is
the Anderson localization dominates in the limit ef-0. expressed by using a time evolution operator,

Most of the present paper is devoted to the study oflthe
model. A similar model with oscillatory perturbation applied
to the off-diagonal part has been used by several authors
[34,35. -

We can also study _other physical situations with our =T, eXF(——J dt’ﬂ(t’))\lf(n,O), (11)
model (1), (2). In the limit filo

W (x,t)=U(t,00¥(x,0) (10)
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whereT, is the time ordering operator. It is known that by ' ' ! !
using the Baker-Hausdorff-Campbell theorem the unitary op- M=0

eratorU can be approximated by an operator given by an P
alternative product of thep-dependent operator and 15x10° o -
x-dependent operator:

k B
Oat,0~]] expcexddVix,eAt)], (12 10 W L
i = o
_ £ o
where the coefficients;==;_,c;. If the set of the coeffi- &
cientsc; and d; is chosen appropriately, the error of the
product operator can be made as smallCat“*1). See o T Gand order St At=09. 7
Refs.[29-33 for the details of the coefficients. Such a nu- “" S

merical scheme of integration is called tk#h-order sym-
plectic integrator(Sl) scheme and it enables us to do the

numerical integration of the Schiimger equation at an ex- 0 T T T T
tremely high numerical accuracy. Further, another advantage 0 2000 4000 6000 8000 10000
of using such an operator is that the norm of the wave func- time

tion is exactly conserved because it is a unitarity operator.  F|G. 1. Time dependence of square displacements for a sample
The numerical procedure of operating the SI can be drasgf L model without perturbation. We use second-order and sixth-
tically sped up by using the fast Fourier transformationorder SI schemes with time meat=0.9.
(FFT) and the inverse FFT. When ardependent operator is
applied, the wave function is represented by the coordinat
(x) representation in which thedependent operator is diag-
onal. After applying thex-dependent operator, the wave
function is transformed into thp-represented one by using
the FFT, and theg-dependent operator is operated on the
diagonal form. Finally the resulting wave function is trans-

§ize of time stepAt=0.9. It is obvious that the wave packet
spreads more than the case of the sixth-order scheme if the
second-order Sl scheme is used.

Further, we have confirmed that the latter temporal evo-
lution of MSD coincides with one obtained at the smaller
. . . size of time stepAt=0.05, and further decrease in the size
formed back into the representation by the inverse FFT. Byo(}f time step no longer gives significant change in the time-

[ﬁgeétliggaiﬂ(i::vgLﬁcsei?\léreezunrusr?/gt”ecﬁlIi%ls ’ ge?i':g(ljeozp:rgi“s%?e{avolution data. Note also that even the _second-order scheme
lattice, if we take the number of lattice Sitéé—2" (m: Aimost reproduces the result of the sixth-order schem'e at
positi\;e integer and impose the periodic boundary condi- At=0.05. From these results, we can concludgz that the SI?(th-
. . order FFT-SI scheme att=0.05 achieves a reliable numeri-
tion, the FFT and the inverse FFT can be executed exactl

o dal accuracy. The advantage of our model is that the numeri-
except for round-off errors. This is the remarkable advantag%al simulation can be done precisely over a very long-time
of applying the FFT-SI scheme to our lattice problem. As the P y y long

kth-order SI scheme is composed df2 and p operators scale because of the one-dimensional nature of our model,
and the CPU time for a single application of the FFT algo-and guantitatively accurate information on the quantum dif-

. . . ) . fusion of the wave packet can be obtained.

gitggnl]elssfe rg%c;r;ﬁ;?rll tgr\:jlenr ’\#Fﬁzlcspéééms irsecéiltriﬁ?aig; aas It is also worthwhile to note that the eighth-order scheme
- . A i ffective for th Iculati I ision. If

NIn Nx2(2¥2—1). See Ref[33] for more detailed infor- is not effective for the calculations at double precision

i th A ; f the FET-SI sch guadruple precision is available in the numerical simulation,
mation on the computer performance of the ~o! SChemgy, eighth-order scheme might become more efficient.
As mentioned above, no significant error emerges at the

FFT and the inverse FFT. Thus the numerical error comes

only from the approximatior_1 by the symplectip integrator. IIl. DYNAMICAL DELOCALIZATION
The accumulated error during thé step iteration of the
kth-order Sl is expected &5, (/)<(At)*"1/. The error is In this section we present a systematic investigation of the

predominantly controlled by the size of time step, but therediffusion properties of thé. model. We only consider time
are some other extra factors that significantly influence th&@volution in which the wave front of the packet does not
accumulated error, for example, the amplitude of the on-sitéeach the boundary in order to avoid the influence of bound-
irregular energy. ary condition and finite size effect. In fact, extending the
We compare in Fig. 1 some typical numerical results ob-system size has confirmed that the boundary condition has no
tained by using the FFT-SI schemes of different order witheffect in some cases. This will also be confirmed by the
several magnitudes of the time step in order to demonstratghape of the wave packet reported in Sec. Il D.
how we have decided the size of the time step and the order
of the SI scheme. Here we used themodel without the
oscillatory perturbationsg=0), and so the wave function is
Anderson localized. Figure 1 shows the time dependence of To observe the temporal behavior of the electronic wave
the mean square displacement for typical samples calculatddnction in theL model, we monitor the time dependence of
by second- and sixth-order S| schemes at a relatively largmean square displacement of the wave packet;

A. Monochromatic perturbation (M=1)
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FIG. 2. (8 Time dependence of MSD in cases driven by mono- 504 »
chromatic perturbationM =1) with some perturbation strength. o o o M=1
o)
5 A e 45 - o © L
my(t) = §() =W (O)|[(n— () ¥(O))a, (13 £ o ©
o
c O O
- N . . 3 40+ L
where n=3__,n|n)(n| is the position operator, and the g o o ©
angle brackets{ ), ()q, mean the quantum and the en- *5
semble averages, respectively. Usually we take the ensemble = 357 O B
average over 20 different samples. 8
We first investigate the perturbation strength dependence 3 ., | o} L
of the MSD as a function of time in the case of monochro- § o e}
matic perturbationi1=1). Figure 2 shows the MSD and its =
logarithmic plots at several perturbation strengths. Appar- * 25 ol
ently the wave packet spreads beyond the width of the
asymptotic wave packet of the unperturbed cdse., )
e=0). Observing the diffusive behavior in more detail, the 0 T T T T
increasing rate of MSD seems to be suppressed as the time 0.0 0.5 1.0 1.5 2.0
elapses. (b) Perturbation Strength ¢

To confirm whether the diffusive behavior continues or

. . . . FIG. 3. (a) Same data as Fig. 2 except for the size of time step
not, we examined a simulation on an extremely long-tim

CAt=05. (b) The € dependence of the enhanced localization length

scale by u_sm_g a larger size of time stéﬂ_,=0.5, Wh_'Ch IS estimated by MSD ir(a). The estimation of enhanced localization
the upper limit that can reproduce the reliable dégpically length of the asymptotic wave packet is based on time average for

the data atAt=0.05 in Fig. 2. Figure 3 shows the result. 4y jnterval =8000—10 00pafter saturation.

Evidently, the diffusive behavior on the earlier time scale

shown in Fig. 2b) saturates at a certain level, and we have teént condition, and we concluded that the time dependence of
conclude that the localization is not destroyed by the monothe MSD is a normal diffusion(Precisely, the initial phase
chromatic perturbation. However, we stress that the localiza0f the perturbation was differentdiowever, the time scale of
tion length of the asymptotic wave packet is much enhancet€ numerical simulation is much shorter than the present
by the monochromatic perturbation. Here we show in FigSimulation, and so the conclusion is not correct, but the
3(b) the e dependence of the enhanced localization lengttfarly-stage temporal diffusion coefficient decided in the dif-
obtained from the data of Fig(&. First, as the perturbation iusive time scale in the preliminary report provides SOme
strength increases, the enhanced localization length also ims'?hg'néolgggy?aT'cfl feature of th“e motr_wocr;r%n:ﬁtlcally
creases. However, when the strength exceeds a certain Ievguﬁrrb;:ioi stren t'h ge agm\j’\éiggrgiréc?ozn%stg? t(?]e di?fups?gn
the incr(_aase of the localization Iength of_the asymp.totic Wav& sefficient doeg not (F))bey)ocez,,and this fact implies that
S%Csk?; geigggégéiesdvandbéhshfviﬁlIé\ilggntrlingjgp;pe;:rignb ven the early-stage diffusion cannot be explained by the

> “perturbation theory, which has been used by several authors
the enhancement of the localization length of the asymptoti¢q 5 18.

wave packet in the larger regime is a general feature of the = ap important property of the monochromatically per-
L model. turbed system is that, unlike the 1DDS without the dynami-
Finally we comment on the relation between the presengal perturbation, the two fundamental scales, i.e., the mean
results and the ones presented in our preliminary reBdrt  free path and the localization length, seem to be well sepa-
In a report we dealt with the same model in a slightly differ- rated, and between the two scales the MSD exhibits a diffu-
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FIG. 4. (a)—(c) Time-dependent MSD df model for polychromatic colorNl =1-13 at the perturbation strengtk=0.5, and(d), (e)
its logarithmic plots.

sive behavior. This is the reason a diffusive behavior is 0bMSD as the number of frequenciéwmlors is increased with
served in our preliminary report. Precisely, the early-stagehe perturbation strength being kept at a relatively small
diffusion is not a normal diffusion. Indeed, Figi® demon-  fixed value €=0.5). In Figs. 4a)—4(c) the time dependence
strates that the logarithmic plots of MSD vs time are onof the MSDs is shown for the several polychromatic pertur-
straight lines in the early stage, but the tangents of theations with different numbers of colordi(=1,2,. . .,13).
straight lines are all less than 1. This fact means that th& is obvious that the wave packet, which is localized without
transient diffusion is a subdiffusion rather than a normal dif-ie perturbations, spreads beyond even the enhanced local-

fgsipn. We note that all the fegtures of diffusion are VerYization length of the asymptotic wave packet of the mono-
similar to the ones observed in a 2DDS, where the two

e chromatically perturbed 1DDSM=1). As the number of
!ength scales_ are well se_pargt[ddG]. Subdiffusion is a ma- frequenciedM increases, the diffusion of the wave packet is
jor characteristic of the diffusion process observed when th ore enhanced
number of frequenciel! is increased to more than one. This . C : . .
will be discussed in detail in the next subsection. The increasing rate of M_SD increases monotonically with

We have shown that a localization in 1DDS is sensitive tothe nu(rjnbéer ofdczlord}/l, but it begins to be suppressedl\;ﬂs

the external monochromatic perturbation, but the monochro€XC€€ds 3, and begins to saturate alldveS. It seems that
matic perturbation is not adequate for destroying the localUnlike the cases of monochromatic perturbation the diffusive
ization perfectly. behavior continues, and that no indication of localization is

observed at least within the time scale we examined in the

numerical simulation. Absence of localization has been con-

firmed for someM’s by extending the time scale of simula-
The question we examine in the present subsection is howion up toT=10 000 [ m,(t)~4000Q.

the temporal behavior of MSD changes when the oscillatory Although the MSD seems to increase without limit, the

perturbation contains more than one frequency componenincreasing rate of MSD in general decreases as the time

First we investigate the change of temporal behaviors otlapses, and so the local diffusion coefficient decreases

B. Polychromatic perturbation (M=2)
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' L ' ! L : Note that it is difficult to judge exactly whether such a
subdiffusion is endless or a transient phenomenon by nu-
merical results even if we performed the larger scale simu-
Co00%00 lation. As we mentioned in the Introduction, the number of
frequency components can be regarded as the number of lin-
ear oscillators coupled to the 1D)38,9]. Accordingly, this
O L result, that the localization can be destroyed by perturbation
with two frequencies, is consistent with the appearance of an
irreversible phenomenon reported in a previous paper
It will be instructive to compare the above diffusion pro-
O cess with the stochastically perturbed diffusion process,
where a stochastic perturbation is applied instead of the poly-
> a4 & 8 10 12 chromatic perturbationg§We hereafter call the stochastically
Number of Color M perturbed model th& model) The MSD for the stochastic
perturbation is shown in Fig.(d) as a reference. In the limit
“1 0 i of M—x the diffusion of the polychromatically perturbed
system approaches the one driven by the stochastic perturba-
tion provided that the perturbation strengthare the same.
o O 'e) 000 Such a feature is comprehensible considering that the poly-
chromatic perturbation can be identified with a white noise
(or a colored noise if the frequencies are distributed over a
finite bandwidth in the limit of M — oo,
1 - We conclude that even though the perturbation streagth
is not very strong, the Anderson localization seems to be
destroyed if the number of colors is more than 1. Even if the
I T T T T T localization is not destroyed, the localization length of the
2 4 6 8 10 12 asymptotic wave packet is extremely enhanced, to a level
Number of Color M undecidable by numerical simulations. The dynamical evolu-
FIG. 5. Number of frequency dependenceafthe power index  tion in the delocalized regime occurs according to a well-
a, and(b) coefficientD, estimated by the data in Fig. 4. defined subdiffusion process, and no sudden transition to
normal diffusion can be observed as the number of colors is

gradually in time. To investigate the nature of diffusion in increased. Normal diffusion seems to be realized only in the

more detail we show in Figs.(d) and 4e) the logarithmic ~ large limit of the incommensurate color numbdr
plot of MSD versus time. Except for the initial regime of  Before closing this subsection we remark on the ensemble

time evolution where the transient effect still remains, all theBverage over the different samples. In the subdiffusion re-
data except foM =1 align along straight lines with tangents 9ime each sample is accompanied by a considerable number

less than 1, and so we may conclude that the MSD obeys g¢f fluctuations, and the time dependence of various quantum
well-defined subdiffusion law: mechanical averages of a single sample does not give a sig-

nificant result. We usually take the ensemble average over
m,(t)=Dt* (0<a<l). (14  20-50 different samples. Such a fluctuation, however, de-

creases in the normal-diffusion limit. This fact implies that
The subdiffusion shown in Fig. 4 is qualitatively different the large fluctuation is strongly related to the nature of sub-
from the one observed in the monochromatic case in th&iffusion itself. The interesting stgustlcal property of the
sense that the localization length of the asymptotic wavéample-to-sample fluctuation in width of wave packet has
packet seems to be infinite, or, that is, at least, drasticallp€en investigated for band random matrix mod@g]. In
larger than the monochromatic case. The exponertb- order to make _clear t_he relation with our model, we have to
gether with the coefficient I are estimated from Fig. 4. In d0 numerical simulation for a large number of samples. The
the numerical fitting we used the least squares fit, discardinfg'ation between the anomalous fluctuation and the subdiffu-
the data points in the very early stage of time evolution ( Sion Will be investigated elsewhef88].
<100), which is influenced by the initial phase of the per-
turbation.

Figure 5 shows the numerically estimated resulta afnd
InD. We find that the exponer# gradually increases and In this subsection, we investigate in detail how the tran-
approaches a constant value slightly less than 1. As will beition from the subdiffusion to the normal diffusion takes
shown below, the limiting valuer approaches 1.0 in the place as the perturbation strength is varied continuously.
limit of M — oo if the perturbation strengtla is taken to be Since we are interested mainly in te&lependence, the color
some finite value. Thus we may say that the subdiffusiomumber is fixed to some representative values, M.,
tends to approach the normal diffusion, as the number of2, 5, and 10.
frequenciesM increases. We have confirmed that the same Figures 6—8 show the time dependence of the MSD and
behavior is also observed for other sets of values of the freits logarithmic plots at several perturbation strengths. From
guencies. the logarithmic plots shown in Figs. 6—8 we can observe that
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even though the perturbation contains many frequency congur system exhibits subdiffusion, it is not possible to intro-
ponents, the diffusion process obeys the subdiffusion lawguce some constant which quantitatively characterizes the
when the perturbation strength is small enough. This facspreading velocity throughout the diffusion process. The co-
implies that, however large the number of frequencies magfficient D introduced by Eq(14) coincides with the diffu-
be, the polychromatic perturbation cannot also yield normasion constant in the normal-diffusion regime, but it does not
diffusion provided that the perturbation strength is weakedirectly characterize the spreading velocity in the subdiffu-
than a characteristic strength determined by the number afion regime. We, therefore, use the local diffusion rate
colors. (It will get smaller as the numbe¥l increases.This  D(T,AT), which is decided by the tangent of the least
is an essential feature different from the stochastic perturbasquares fit to the data for the finite-time interviedst<T

tion which induces a normal diffusion however small the +AT. In Figs. 1Ga) and 1Gb) we depict thee dependence
strengthe may be. of the local diffusion rate®(T,AT) measured af =100,

In Fig. 9 thee dependence of the numerically estimated300, 500, and 700 for the intervAlT=200. A remarkable
exponente of subdiffusion for the three casés=2, 5, and fact is that they first increase rapidly and reach a maximum
10 is shown. In all cases the exponenincreases steeply as value and finally decrease slowly. The value efwhich
€ increases, and eventually approaches unity, which mearsakes the local diffusion rat®(T,AT) maximum almost
the onset of normal diffusion. As the numblgr increases, agrees with the characteristic value at which the index
the approach ter=1.0 with an increase ie becomes faster. begins to saturate to 1@ee Figs. 6—-8 As has been men-
We stress again that the transition from subdiffusion to nortioned in Sec. Ill A, similar characteristics are observed for
mal diffusion is continuous, and there seems to be no drastithe monochromatic perturbation system in thdependence
change. of the enhanced localization length.

A more basic question is whether there is any transition To have some idea of such a characteristic behavior, we
from the localized state to the delocalized state in the exeompare the above results with the diffusion rate of the
tremely weake regime. This is a very hard question which is 1DDS perturbed by the stochastic perturbati@ee Figs.
not easy to answer from the results of numerical investigail(a) and 11b)]. Figure 12 shows the dependence of the
tions. The fact we could confirm is that for all the data pointsdiffusion rate numerically estimated from MSD. The global
displayed in Figs. 6—8 the subdiffusion does not saturate ufeature of thee dependence is very similar to the results
to the numerically computable time scdle tot<10%). shown in Fig. 10a). In particular, the values of* (=~1.0)

Next we investigate how the spreading velocity of thewhich make the diffusion rates maximum coincide and the
wave packet depends upon the perturbation strength. Sineeaximum values of the local diffusion rates are also close to
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each other. However, the detailed behaviors exhibit signifi-
cant differences. In the very small regimeefthe diffusion 2000 -
rate behaves @B (€)x € in the case of stochastic perturba-
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cases of polychromatic perturbation. Further, in the lakger
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estimated by the MSD data in Fig. 1(b) The expansion of the distribution function of S model at the perturbation strengh
vicinity of an origin in (a). =0.5. The ensemble size is 50.

The observation of enviroment induced decoherence Oéhanges into normal diffusion with increasesMnande. In
dynamically localized states in a quantum kicked rotorp,ricylar, we will show that the time-evolution process of
(QKR) is interesting 39—41]. Moreover, note that some pro- P : : .

. S ' Pro- the distribution function obeys a remarkable scaling law in
peries of spectra and eigenstates of a band random mat4e subdiffusion regime.

(BRM) are expected to have statistical properties similar 10 Eirst we show typical examples &(n,t) in the localiza-
those of the QKR 42,43. It has been reported that in theaj/ivon regime and in the subdiffusion regime, in comparison

QKR and BRM the strength of noise exceeds some criticayiuh p(n, t) of the Smodel which obeys the standard Gauss-
value, then it destroys the coherent effect of quantum Iocall—an process. Figures 13 and 14 show some snapshots of
ization and pure classical diffusion is recovergdV’,41]. P(n,t) for the Smodel, and for tha. model withM =0, 2,

Quantum diffusion with small diffusion rate can be observedand 5. We use 50 samples of spatial disorder to average the
for a smaller noise strength than the critical strength. distrib.ution function
On the other hand, ‘?‘ltho_th there_ are interesting prelimi-= g analytical results have been obtained for steady-
hary resullis t?]at Sgbd'ﬁ?s'vz k?ehaworl f(;)r t[l?? Spr?ﬂd of &tate distribution in a continuous 1D disordered model with
wave packet has been found in coupled QKRs wit .Weal%vhite noise potential44]. The shape of the wave packet in
c_ouplmg strengtti23,2d, more detailed numencgl Investiga- ,q unperturbed case is consisent with the analytical form.
Epnhs(;/ylth adequlate slgcura(cjy ha\(e dt'o *Ijle carrltedbogt f()Lg‘ﬁ/loreover, it has been shown that the analytical expression
igh-dimensional Q and periodically perturbed Q reproduces the asymptotic average of the wave packet for

without any external stochasticity. some quasi-1DDSs welB7]
) ) In the Smodel the distribution function spreads exactly in
D. Scaling properties the shape of the Gaussian distribution function, and such a

The MSD, which obeys the subdiffusion law, approachedehavior, of course, occurs regardless of the perturbation
rapidly but continuously the normal-diffusion law ad strength. In contrast with this, the distribution function be-

and/ore is increased. In the normal-diffusion regime, we cancomes localized and approaches the shape of the linear-

expect that the distribution function exponential decayEg. (17)] in the case oM =0. On the
other hand, in both casdd =2 and 5, which exhibit the
P(n,t)=(|¥(n,1)|%)q (15  subdiffusion, the wave function spreads, but they seem to
] ] have some interpolated shape between(Eg).and Eq.(17).
evolves in the Gaussian form Moreover, a remarkable peak remains in the vicinity of the

2 2 center of the distribution even in the later stage of time evo-
P(n,Dexp = (n=no) /[ 2&(1) ]} (16) lution (at least up tol' ~1900). The presence of such a peak

On the other hand, the localization occurs at least in the cass£€Ms to be strongly correlated with the subdiffusiand

of M<1, in which the wave packet decays in a linear- the localization as well In fact, as normal diffusion is
exponen’tial form{3] achieved with increase ia and/orM, such a peak disap-

pears.
P(n,t)cexp{—|n—no|/&(t)}. (17 Next, we seek the mathematical rule underlying the time-
evolution process of th€@(n,t). In both extreme cases of
We are interested in how the time-evolution process of thdocalization and of normal diffusion, it is evident that the
distribution function changes as the localization processlistribution function obeys the scaling rule
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FIG. 15. Semilog plots of the scaled wave functidhgn,t*)
for various snapshots ih model for(a) M=2, (b) M=3, (c) M
=5. We used a snapshot & =700 as a standard distribution.
Smoothened data are used to observe the coincidence clearly. Since
these distribution functions are symmetric with respect to the center
of the distribution, the left parts are omitted.

ity, we henceforth redefine the center of the distribution
=nq as the origin of the distribution function. We may ex-
pect that such a scaling rule can also be extended to the
subdiffusion regime. We first examine whether our expecta-
tion is valid. To do this examination, we suppose the distri-
bution P(n,t*) at timet* (=700) is a standard distribution.

If the scaling rule(18) is correct, we can construct the dis-
tribution function att* from the one at an arbitrary by
settingt,=t* andt;=t in Eq. (18). The only information

FIG. 14. Some snapshots of the ensemble averaged probabilifyecessary to carry out the procedure isffe,t) and MSDs
distribution function ofL model for some different numbers of fre- £(t)? and &(t*)2. If such distribution functionsPy(n,t*)

quency(@ M =0, (b) M=2, (c) M=5. The perturbation strength is

taken ate=0.5. The ensemble size is 50.

at two arbitrary timed; andt, in the time domain in which

_f(tl)P(f(tl)n )
&ty T

P(n,tz)—@

=E(t*)E() P(E(tF)/ (L) t), made up fronP(n,t) at dif-
ferentt’s, coincide with each other, we can prove the pres-
ence of the scaling property. In Figs. (26-15c) we show
the semilog plots of th&,(n,t*)’s obtained at severdils in
the cases oM =2, 3, 5.(The perturbation strengthis taken
at a fixed value of 0.5 for all daggAll the P,(n,t*)’s coin-
cide with each other very well, and thus we have to conclude

the stationary evolution is achieved. For the sake of simplicthat P(n,t) is represented by a single scaled form,
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FIG. 16. () Some snapshots of the ensemble averaged probability distribution furitiom) and (b) the scaled functiorP,(n,t*
=700) ofL model forM=3, e=2.0. The ensemble size is 50.

. n Observing that in the Gaussian limig(x)>=x?+ const,
P(n,t)=&(t) Py ) (19 whereasg(x)=|x|+const in the localization limit, we may
guess that the functiog(x) shows the power-law depen-

In Fig. 15 smoothed data are used to observe the coinciden&&nce except for a constant part

clearly. The data at=300 are still in the early stage and thus

slightly deviate from the scaled form achieved by the data in 9(x) = go|x[?, (21)

the later stages. The time evolution of distribution functions

and the scaled functions at different choices of the paramwhich interpolates the two limiting situations, where the ex-

eters are also shown in Figs. 16 and 17, where the originglonents will take a fractional value between 1 and 2 amgd

data which are not smoothed are displayed. These data alé®a certain positive constant. However, as stated above, the

support the above conclusion. scaled distribution function has a sharp peak at the center of
Finally we investigate in more detail the functional form the distribution, and the scaled distribution function will be

of P.(X). Let g(x) be the exponent function defined by fitted to the power law20) except for the singular part very

close to the central peak. The unknown parameigrand 8

Px)=€ 9%, (200 are decided so thaD(x,go)= In{— In Ps(X)+go} may fit
| | | | | | | L | L 1 . | |
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FIG. 17. (a) Some snapshots of the ensemble averaged probability distribution furRtiom) and (b) the scaled functiorP,(n,t*
=700) ofL model forM =10, e=0.1. The ensemble size is 50.
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FIG. 18. Best linear fits of the scaled distribution function in the
cases of thd. model forM=2, 3, 5, andS model. We used the in the intermediate regime where the anomalous diffusion is
valuego=2.4 as the best selection for all cases. We used a snapshobserved. Figure 19 shows the plot af,(3) obtained for
att* =700 as a standard distribution. various combinations of the two independent parameters

andM. The precise determination @f is more difficult than

best to the linear function of I, i.e., B In [x|+const except «, and the former is accompanied by some amount of error,
for the range close to the origin. For smakgy, the Q(x,go) but it is evident that the two exponents are strongly corre-
is concave as a function of |1, whereas it is convex for lated in the subdiffusion regime. Because of the numerical
largergg, and for an optimag)y the Q(x,go) becomes nicely errors, it is not convincing that the plots of the two exponents
straight as a function of Ijx| except for the range close to the are on a single unique curve. Whether the two exponents are
origin. independent or whether one of them is decided by the other

In Fig. 18 we show the best linear fits of the scaled disdis a quite interesting question worth being examined by a
tribution functions in the cases ™M =2, 3, 10, andSmodel = more extensive numerical simulation. As has already been
(e=0.5). The fitting is very nice in the significant region of mentioned, the data of MSD and of the shape of the prob-
X, which strongly indicates the validity of the power-law de- ability distribution function are accompanied by a large
pendence. The precise choice of the expongnisnot very  amount of fluctuation in the subdiffusion regime, and we
easy, and it is accompanied by some amount of error, but itave to take the ensemble average over a larger number of
is evident that as the numbéft increases € is fixed) the  samples in order to eliminate the numerical errors of the
exponent increases gradually from 1 to the upper bound 2 iexponents. Moreover, the large fluctuation itself is a very
the Gaussian limiM — . Similar behavior occurs whenis  interesting phenomenon inherent in the subdiffusion, which
increased with the number of colors being fixed%2). In  we plan to analyze in more detail in the future.
conclusion, the scaled form of the distribution function is

In Ix]

given by the “stretched” Gaussian distribution IV. OTHER MODELS
Psd X) = exp{ — cons |x|#}, (22) In the present section we investigate the characteristics of
" diffusion in the one-dimensional tightly binding models
P(n,t)~ exp{—consi (|n|/t*?)#}, (23)  driven by the oscillatory perturbation in ways different from

the L model, namely, the AC model and tBemodel, which

except for the range close to~0. Thus the distribution have been introduced in Sec. Il A.

function is specified by the two exponents, i®.character-

izing the temporal growth of the wave packet, ghdchar-

acterizing the spatial decay of the wave function. Our scaled A. AC model

distribution function is a unified form which contains the two  The characteristics of diffusion of the AC model are very

extreme limits, i.e., the localizationas(=0,8=1) and the similar to those of the. model. We discuss some details.

normal diffusion @=1,8=2) as special cases, and in gen- Figures 20a)—20(c) show the MSD at the perturbation

eral interpolates them. strengthe=0.01. In the monochromatically perturbed case
A question arising here is about the relation between thehe diffusive behavior saturates at a certain level, and we

two exponentsx and B. If the exponenta=1 then we ex- conclude that the localization is not still destroyed by the

pect that the diffusion process is normal diffusion and so thenonochromatic perturbation. However, the localization

spatial exponenB=2, whereas ifa=0 we expect that the length is considerably enhanced by the monochromatic per-

system is localized and thyg= 1. Therefore, the two expo- turbation.

nents are not independent and are strongly correlated at least Next we consider polychromatically perturbed cases. We

in the normal-diffusion limit and in the localization limit. show in Figs. 2(d) and 2@e) the logarithmic plots of MSD

Such a correlation between the two exponents may also exiss time. All the data align along straight lines with tangents
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FIG. 20. (a), (b), (c) Time dependence of the MSD in AC model driven by oscillatory perturbation for polychromatic ddlerl(-13
at some perturbation strengtés=0.02, and(d), (e) its logarithmic plots.

less than 1, and so we may conclude that the MSD obeys thetrength to the relatively large value=2.0 and change the
subdiffusion law. Figure 21 is thé&1 dependence of the number of colordv.

power indexa(M) and coefficient IlD(M) in Eg. (14), es- By introducing the oscillatory perturbation, we observed
timated from the data in Fig. 20. The results suggest thathat the ballistic motion changes into either localized or dif-
normal diffusion is realized in the limit oM —«, as has fusive motion, but there are some qualitatively noticeable
been recognized in the model. In conclusion, all the fea- differences from thé model. The diffusion rate is in general

tures of the AC model are quite similar to themodel. much larger than that of thie model at the same andM.
Figure 22 shows the logarithmic plots of MSD as a function
B. B model of time atM=1,2,...,13. At M=1, the ballistic motion

seems to be most drastically suppressed: the logarithmic

Without the oscillatory perturbation, the dynamics of theplots of the MSD deviate significantly from a straight line,
B model exhibits a ballistic motion instead of the localizationwhich strongly indicates a tendency toward the localization.
and thus makes a sharp contrast to thmodel. The major We conjecture that localization occurs in the present case,
interest here is how such a ballistic motion is suppressed arlout the localization length is much larger than the case of the
changes into other kinds of motion by introducing the dy-L model and AC model at the same valuesvbfand e.
namically oscillating random scatterers. At M larger than 1 the logarithmic plots of MSD are

In the numerical simulation of thB model the perturba- obviously on the straight line of tangent 1.0, and the subdif-
tion strengthe is made considerably larger than in the fusion regime, which is a remarkable characteristic inlthe
model because of some technical reasons: at small values ahd the AC models, cannot be observed. The diffusion rate is
e the wave packet spreads very quickly to reach the boundmuch larger than that of tHe model at the same values lgf
ary of the system because of the ballistic nature of the unande, but it decreases with an increaseeinin the limit of
perturbed motion, and it is very difficult to observe the sta-e—c< the L model approaches tHg model, and so the dif-
tionary stage of the motion with a numerical simulation of afusion rates of the two models should coincide asymptoti-
finitely sized model. In practice we fixed the perturbationcally in this limit.
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V. SUMMARIES AND DISCUSSIONS
Y j T T T
We have numerically investigated the time-evolution pro- 0 200 400 e °° 800 1000

cess of a one-dimensional disordered quantum system drive
by an oscillatory perturbation which consists of different fre-
quency components. Any disordered quantum system is not F|G. 22. Time dependence of the MSD Bxmodel driven by
isolated from the influences of other degrees of freedom, an@scillatory perturbation for polychromatic coloM(=1-13 at the
such an effect may drastically change the nature of the digerturbation strengthe=2.0.
ordered system. By adding the oscillatory perturbation we
intend to simulate the influences of other dynamical degreesquare displacemeg(t)? is eventually bounded by a certain
of freedom. We are particularly interested in how the numbefinite level. (See Fig. 3. Thus the localization is not de-
of degrees of freedom of the perturbation changes the locabtroyed by the monochromatic perturbation. However, the
ization effect which is the generic nature of 1DDS. In ourlocalization length is enhanced more than the localization
model the number of degrees of freedom can easily be corlength of the unperturbed 1DDS.
trolled by the numbeM of the different frequency compo-  (2) In the case of the numbé =2, diffusive behavior is
nents. maintained within the time scale accessible by the numerical
The time evolution of a wave packet is investigated bysimulation.(See Fig. 4. The diffusion process is not, how-
systematically changiniy! and the perturbation strength ever, in general the normal diffusiaft)?«t but the subdif-
The higher-order FFT—symplectic-integrator scheme wagusion in which the MSD increases &&t)%«=t®. (See Fig. 4.
used in the numerical computation. The localization is veryThe characteristic exponeatis between 0 and 1, and as the
sensitive to the oscillatory perturbation, and under some gemumberM and/or the perturbation strengthincreases, the
eral conditions the localization length is much enhanced to @xponentae approaches 1(See Figs. 5 and 1P0.
level which cannot be decided by numerical computations. (3) The subdiffusive behavior of MSD implies the exis-
The wave packet diffuses far beyond the localization lengthence of a scaling property in the time-evolution process.
of the original 1DDS, and it has been discovered that théndeed, the distribution functio(n,t) is scaled byé(t),
diffusion process obeys a unified scaling law characterizeavhich is decided by the exponeat (See Figs. 15—1YFur-
by a few characteristic exponents. The results we obtained ither, the scaling function is specified by a new expongnt
the present investigation are summarized as follows. characterizing the spatial decay of the distributi(®ee Fig.
(1) In the case of the monochromatic perturbatioi ( 18) Consequently, the spatiotemporal behavior of the
=1), a diffusion occurs in an early stage of time evolution,distribution function is characterized by the spatial
but it is suppressed on a longer-time scale, and the meaxponentB and the temporal exponent in the form of
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P(n,t)~ exp{—const4n|/t“’2)ﬁ} (see Fig. 1% which is a  ability to yield mixing properties which finally lead to a dis-
unified scaling distribution containing the two cases, i.e., lo-Sipative behavior. This fact provides a hint to elucidate the
calization @=0,8=1) and normal diffusion ¢=1,6=2) relationship between the localization and the resistivity

as extreme limits(See Fig. 19. The results summarized dissipation, which are both the results of the scattering by
above have been obtained for themodel. We also exam- ""égularly distributed impuritieg9]. In short, the localized

ined other kinds of models of the dynamically driven 1DDS, Stt€ is very close to a mixing state which has the ability of
(4) The diffusion properties of the AC model are very losing the initial memory. Such a potential for the mixing in

similar to theL model, but the dynamical characteristics of 4" system is very similar to the characteristic of a quantum
the B model are quantitatively different from tHe model. chaos systerf?0,28, although, as discussed in the Introduc-

The most remarkable feature is that the subdiffusion regimgon’ some basic differences may exist between the two sys-

is not observed, and normal diffusion occurs kbe2. (See

Figs. 20 and 22.The fact that the scaling behavior connects, ., =~ . ) : : e
the two extreme limits, i.e., localization and normal diffu- tribution function(23) is also reported in a classical diffusion

sion, continuously seems to imply that the two seemingIySySten;[‘lE’_Alfﬂ{hIn partléular, !t IS veré/ L)nﬁregfur:gbthtz_it thhe
contradictory notions of localization and normal diffusion Eame gtm.] Od fe tnhon_l augsr:;r:g probabiiity t'ISI rbu !?hnl as
may be understood in a unified manner by including the een obtained for the classical brownian particies with long
oscillatory perturbations, memory effect on the fract:_:\I mediu6,47. In _these cases
With the present status of our numerical computationthe exponents corresponding & and § are directly con-

power, it is not very easy to judge whether the Subdiffusionnected to the exponents of the spatial correlation of scatterers

is endless or not. However, it is certain that the saturation ofmd of the temPOra' correlat_lon of the random forces, which
subdiffusion could not be observed within a very Iong-timeare both explicitly assumed in the model system. In our case,

scale accessible by the numerical simulation. Even thougH0 tSUCh e>(<jptl;10|t asT_umrk))tl?]n had_ beeh[l done 'ltndthetrznodel
the localization length is finite, it increases very quickly with system, and the scaling behavior is sefi-generated in the sys-

increase inM and/or e, and we can practically regard the em.

It is worth to noting that the scaled evolution of the dis-
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