

局在は非可逆性の生みの親、、、、

アンダーソンモデルの動的局在非局在転移

池田研介, 山田弘明

立命館大学理工学部, 山田物理学研究所

2018/9/XX

- ●1. 本研究の経緯
- ●2. モデル
- ●3. 数值計算
- ●4. アンダーソンモデルの2色準周期摂動による波束の広がり
- ●5. アンダーソンモデルの 4 色準周期摂動による波束の広がり
- •6. まとめと問題点
- ●7. 文献

本研究の経緯(1)

● 大前提:

「1次元ランダム系 (1DDS) ⇒ 固有関数の指数関数的局在 (数学的にも確立)」

「波束のダイナミックスも局在(数学的証明はないが物理的には常識)」

- •1990: 1DDS(格子系) が $\varepsilon \sin \omega t$ の 1 色摂動のみで非局在化 ?? 池田: 非局在化 vs 山田:局在 (賭け @ 基研玄関)
- ⇒ 非局在傾向は生じた(but後に局在長が伸びるが局在は維持)
- ●1993: 一色系の論文 (PLA)
- •1999: 多色摂動による非局在化 $(m_2 \sim t^{\alpha}, \alpha(\varepsilon) \leq 1)$ (メガホン型) 計算は短時間、パラメータも制限的

本研究の経緯(2)

- ●2002:一方、離散時間モデルの 1 次元アンダーソンマップの提案 局在・非局在特性の探査 (論文 PLA 2004)
- ●2014(PRE):多色摂動 1 次元アンダーソンマップの局在・非局在 「1 色摂動では局在、2 色以上の摂動で臨界現象」

⇔ 同摂動のSM系 (kicked rotor)

●2018(PRE): 1 色摂動 1 次元アンダーソンマップの局在スケーリンング特性 ⇔ 同摂動の S M 系 (kicked rotor) (kick の効果でメリーランド変換により kicked rotor 系と類似の式) c.f. Delande らの実験・数値計算

写像系の結果を踏まえ、時間連続な1次元アンダーソンモデルでどうなるか? 再探査が必要

•kick の特異性により、同じ条件ならアンダーソンモデルのほうが写像系よりも非局在化しにくい。(c.f.SM 系は kick がないと可積分系になる)

モデル

● 準周期的時間摂動下での一次元アンダーソンモデル

$$i\hbar \frac{\partial \phi(n,t)}{\partial t} = \phi(n+1,t) + \phi(n-1,t) + V(n)(1+f(t))\phi(n,t),$$

$$f(t) = \frac{\epsilon}{\sqrt{M}} \sum_{i=1}^{M} \cos(\omega_{i}t + \theta_{j}).$$

- -V(n): spatial disorder (disorder strength W)
- ε: perturbation strength($\varepsilon << W$)
- ω_i : incomensurate frequencies of order O(1)
- θ_i :initial phases (=0)
- -M: number of colors
- 広がりをモニター: Mean square displacement (MSD)

$$m_2(t) = \sum_{n} (n - n_0)^2 \left\langle |\phi(n, t)|^2 \right\rangle \sim t^{\sigma}$$

数值計算

●時間発展

$$U_{tot}(t,0) = \mathcal{T}e^{-i\int_0^t H_{tot}(s)ds/\hbar}, \quad \phi(n,t=0) = \delta_{n,n_0}$$

$$H_{tot}(t) = \sum_{n=1}^N |n\rangle V(n)(1+f(t))\langle n| \sum_n^N (|n\rangle\langle n+1| + |n+1\rangle\langle n|)$$

パラメーターなど

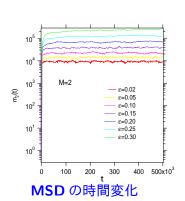
- 2nd order symplectic integrator
- 時間刻み $\Delta t = 0.02 \sim 0.05$
- ステップ数: $10^7 \sim 2 \times 10^7$
- 乱れ $V(n) \in [-W, W]$, 乱れ強度 W = 1.0
- $\hbar = 1.0$
- サンプル平均 5~10

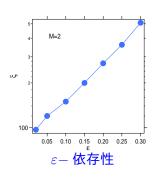
アンダーソンモデルの準周期摂動による波束の広がり

- ●1 色摂動の場合 (M = 1):局在 c.f. フロケ解析可能
- ●2 色摂動の場合 (M = 2):

局在 $m_2(t) \Rightarrow t^0$

動的局在長 (DLL): $\xi = \sqrt{m_2(t \to \infty)}$

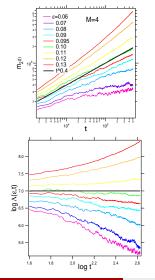




指数型依存性 $\xi = \xi_0 e^{c\varepsilon}$

アンダーソンモデルの準周期摂動による波束の広がり2

ullet4 色摂動の場合 (M=4): ulletMSD の時間変化



$$m_2(t) \sim \begin{cases} t^0(\text{localization}) & \varepsilon < \varepsilon_c \\ t^{0.4}(\text{subdiffusion}) & \varepsilon \simeq \varepsilon_c \end{cases}$$

 $t^1?(\text{delocalization}) & \varepsilon > \varepsilon_c \end{cases}$

●scaled MSD の時間変化

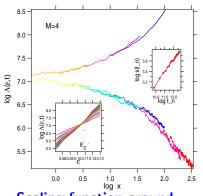
$$\Lambda(t) \equiv \frac{m_2(t)}{t^{lpha}}$$
, $lpha = 0.4$

⇒ ラッパ型 ⇒ 局在・非局在転移

c.f. 平均場近似: $m_2 \sim t^{2/(M+1)}$

アンダーソンモデルの準周期摂動による波束の広がり3

●4 色摂動の場合 (M = 4):



Scaling function around LDT of M=4

1 $\stackrel{\wedge}{\cap}$ \downarrow $\stackrel{\wedge}{\circ}$ $\stackrel{\wedge}{\circ$

$$\Lambda(\varepsilon,t) = F(x)$$

$$x = \xi(\varepsilon)t^{\alpha/2\nu},$$

$$\alpha = 0.4, \varepsilon_c = 0.105$$

局在長: $\xi(\varepsilon) = \xi_0 |\varepsilon_c - \varepsilon|^{-\nu}$, $\nu \simeq 0.87$

Asymptotic form: $F(x) \rightarrow |x|^{-2\nu}$.

$$\Lambda(\varepsilon,t) \sim t^{-\alpha} |\varepsilon - \varepsilon_c|^{-2\nu}$$

まとめ

●空間次元 d のランダム系と M 色摂動の 1 自由度系の局在・非局在

_	_	_		_
空間次元	1	2	3	4
多次元 Anderson model	局在	exp拡大 型局在	LD転移	LD転移
多色 standard map	局在	exp拡大 型局在	LD転移	LD転移
多色 Anderson map	局在	exp拡大 型局在	LD転移	LD転移
多色 Anderson model	局在	exp拡大 型局在	exp拡大 型局在	LD転移
色数		1	2	3

写像系: $(M+1) \iff d$ (c.f. メリーランド変換)

連続系: $M \iff d$??

まとめと問題点

- M = 2の場合
- 摂動強度 ε を増しても局在傾向しか見られない
 - $-\omega_i$ 変化に対する安定性の check
 - 局在長のスケーリング特性は写像系と同じか?
- M > 3の場合

臨界強度 ε_c をもち **LDT** が観測される

- subdiffusion の指数 α 、局在長発散の臨界指数 ν の色数依存性は平均場近似のものに近いか?
- 臨界強度 ε_c の色数依存性は写像系のもに対応するか?

References

●時間連続系

- H.Yamada, K.S. Ikeda and M.Goda, Phys.Lett.A 182,77(1993).
- H.Yamada and K.S.Ikeda, Phys.Lett.A 248,179(1998).
- H.Yamada and K.S. Ikeda, Phys.Rev.E 59,5214(1999).
- H.Yamada, Proc. of Japan-Italy Joint Workshop on Quantum Open System, Quantum Chaos and Quantum Measurement: Fundamental Aspects of Quantum Physics, Ed. by L.Accardi and S.Tasaki, 80-99 (World Scientific 2003)

• 写像系

- H.Yamada and K.S. Ikeda, Phys.Lett.A 328,170 (2004).
- H.S.Yamada and K.S.Ikeda, Phys. Rev. E 82, 060102(R)(2010).
- H.S.Yamada, F.Matsui and K.S. Ikeda, Phys.Rev.E 92, 062908(2015).
- H.S.Yamada, F. Matsui and K.S.Ikeda, Phys.Rev.E 97, 012210(2018).
- H.S.Yamada and K.S.Ikeda, in preparation (2018).